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Introduction
Lattice Isomorphism Problem: decide if two lattices are isomorphic and if so, find an isomorphism.

‘Arithmetic Invariants’: (efficiently computable) properties of lattices preserved under isomorphism.

Means: L and f(L) share an efficiently computable property.

Examples:
Class: L ∼ L′ if related by a global isomorphism.
Genus: L ∼ L′ if related by local isomorphisms.

Are there more relations? Yes!

In this talk: we discuss when a certain invariant (the ‘spinor genus’) is useful for solving LIP.

Why? vWD21 developed a KEM and signature scheme from LIP. ALW24 developed PKE.
DPPvW22 developed an optimised signature scheme, HAWK, based on search LIP on rank-2
Hermitian module lattices. Submitted to NIST’s PQC standardisation process.
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Lattices and their Isomorphisms

L = L(B) = {x : x =
∑n

i=1 aibi, ai ∈ Z}

GLn(Z) = {M ∈ Mn(Z) : det(M) = ±1}
On(R) = {M ∈ Mn(R) : MTM = In}

Lattice isomorphism: L ∼= L′ ⇔ there exists O ∈ On(R) : L′ = O · L.

Classes: L ∼ L′ ⇔L′ ∼= L.
Then {Integer Lattices}/ ∼ partitions the set into equivalence classes.
Write L ∈ [L′].

Search LIP: find U ∈ GLn(Z) and O ∈ On(R)with B′ = OBU.
Ask for U since OB = B′ ⇒ O = B′B−1.

Decision LIP: decide if a pair (U,O) exists for L,L′.

Distinguish LIP: Given L0,L1, and L ∈ [Lb] for uniform b ∈ {0, 1}, find b.
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Lattice Isomorphism Problems
Pictorially
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Quadratic Forms
Quadratic forms/Z: f(x) =

∑n
i,j fijxixj with fij ∈ Z, fij = fji.

Then f(x) = f11x21 + f12x1x2 + . . .+ fnnx2n.

Alternatively: f(x) = xTFx, with F a symmetric matrix of f.

f and g are equivalent over Z if ∃ U ∈ GLn(Z) : F = UTGU.
Then f ∼Z g or f ∈ [g] or f ∈ classg.

If B′ = OBU: B′TB′ = (OBU)TOBU = UTBTBU.
BTB is symmetric, integral, so corresponds to a quadratic form.
If f a quad. form: f(x) = xTFx; Cholesky⇒ factor F = BTB.

So we can move between quadratic forms and lattices over the integers.
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Solving Lattice Isomorphism Problems
Arithmetic Invariants
Decision/Distinguish LIP is easy if there are efficiently computable invariants of quadratic forms
which differ for forms in distinct classes (i.e. non-isomorphic lattices).

Determinants: F = UTGU⇒ detF = det UT detGdetU = detG.

So f,g share ‘fingerprint’: (det, par, gcd, equivalence/{Q,R,Zp}).

So to instantiate LIP in cryptography, make sure forms have matching fingerprints!

We care about the notions of equivalence.
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The Genus
Definition: let Z(p) = { a

b |a ∈ Z,b 6= 0, gcd(b,p) = 1}.

f ∈ geng iff F = UpGUt
p for Up ∈ Gln(Z(p)) for all p (and overR).1

Each genus is a disjoint union of classes. So given f, we have

class f ⊂ gen f

So given f,g, test if gen f = geng; if not, then class f 6= classg.
[BDG23] studies the genus in a cryptographic context.

Q: Are there more equivalence relations on the space of quadratic forms?

1Alternatively, Up ∈ Zp.
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The Spinor Genus
Overview
There is another equivalence relation on spaces of quadratic forms!

Informal description: let V/K be a vector space over a field. Then there is a homomorphism

Group of Rotations of V → K×/(K×)2

The kernel is thus a proper normal subgroup of the group of rotations of V.

We can use this normal subgroup applied to Vp to define an equivalence relation on lattices in V.

This relation gives a partition finer than the genus but coarser than the class.
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The Spinor Genus
Via Bad Paint Drawings
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The Spinor Genus
Setup

Let K be a number field. Let V/K be a vector space. Lattices live on V, i.e. L ⊂ V.

V is equipped with a quadratic form ϕ : V → K (a ‘quadratic space’).
O(V) = {σ : V → V : ϕ(σx) = ϕ(x)}
O+(V) = {σ ∈ O(V) : detσ = 1}.

ϕ is regular if detϕ 6= 0.

ϕ is anisotropic if there is no x ∈ V \ 0 such that ϕ(x) = 0.

L and L′ lie in the same class iff there exists some β ∈ O(V) such that L′ = βL.

L and L′ lie in the same genus iff there exist βp ∈ O(Vp) such that L′ = βpL for all primes p.
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The Spinor Genus
The Spinor Norm
Set b(x, y) = 1

2 (ϕ(x+ y)− ϕ(x)− ϕ(y)).
Reflections: an involution τ is a reflection if for all x ∈ V there is an anisotropic vector y ∈ V such that

τ(x) = τy(x) := x− b(x, y)
ϕ(y)

y

Theorem (Cartan-Dieudonné)
If V, ϕ is an n-d regular quadratic space, every element of O(V) is a product of at most n reflections.

Spinor Norm: Let σ ∈ O+(V). Then by Cartan-Dieudonné, σ =
∏

i τyi . The map

θ : O+(V) → K×/(K×)2, σ 7→
∏
i

ϕ(yi)

is a multiplicative homomorphism called the spinor norm. LetΘ(V) := ker θ ⊴ O+(V).

We will apply this to define an equivalence relation using localisations Vp, like the genus.
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The Spinor Genus
Equivalence using ker θ = Θ(Vp) ⊴ O+(Vp)

Definition: L and L′ satisfy S(L,L′) if there exist γ ∈ O+(V) and δp ∈ Θ(Vp): L′ = γδpL ∀ p.

This relation is an equivalence relation intermediate to the class and genus.

Transitivity: suppose L,L′,L′′ satisfy S(L,L′) and S(L′,L′′). Then there are γ1, γ2 ∈ O+(V) and
β1p, β2p ∈ Θ(Vp) such that L = γ1β1pL′ and L′ = γ2β2pL′′ for each prime p. Combining these,

L = γ1β1pγ2β2pL′′ = (γ1γ2)(γ
−1
2 β1pγ2β2p)L′′

for each prime p. Since γ1γ2 ∈ O+(V) and γ−1
2 β1pγ2β2p ∈ Θ(Vp), S(L,L′′) holds.

Spinor Genera: the equivalence classes {Lattices on V}/S. If S(L,L′) holds, write L ∈ spn(L′).

Lemma (Cassels)
1. The number of spinor genera in any genus is finite and a power of 2.
2. For all n ≥ 3 there exist lattices whose genus contains multiple spinor genera.
3. If (V, ϕ) has dimension n ≥ 3, L ⊂ V, ϕ takes integral values on L, and gen(L) contains multiple

spinor genera, then either there exists p > 2: p
n(n−1)

2 | det(L), or 2n(n−3)/2+⌊(n+1)/2⌋ | det(L).



The Spinor Genus
Equivalence using ker θ = Θ(Vp) ⊴ O+(Vp)

Definition: L and L′ satisfy S(L,L′) if there exist γ ∈ O+(V) and δp ∈ Θ(Vp): L′ = γδpL ∀ p.

This relation is an equivalence relation intermediate to the class and genus.
Transitivity: suppose L,L′,L′′ satisfy S(L,L′) and S(L′,L′′). Then there are γ1, γ2 ∈ O+(V) and
β1p, β2p ∈ Θ(Vp) such that L = γ1β1pL′ and L′ = γ2β2pL′′ for each prime p. Combining these,

L = γ1β1pγ2β2pL′′ = (γ1γ2)(γ
−1
2 β1pγ2β2p)L′′

for each prime p. Since γ1γ2 ∈ O+(V) and γ−1
2 β1pγ2β2p ∈ Θ(Vp), S(L,L′′) holds.

Spinor Genera: the equivalence classes {Lattices on V}/S. If S(L,L′) holds, write L ∈ spn(L′).

Lemma (Cassels)
1. The number of spinor genera in any genus is finite and a power of 2.
2. For all n ≥ 3 there exist lattices whose genus contains multiple spinor genera.
3. If (V, ϕ) has dimension n ≥ 3, L ⊂ V, ϕ takes integral values on L, and gen(L) contains multiple

spinor genera, then either there exists p > 2: p
n(n−1)

2 | det(L), or 2n(n−3)/2+⌊(n+1)/2⌋ | det(L).



The Spinor Genus
Equivalence using ker θ = Θ(Vp) ⊴ O+(Vp)

Definition: L and L′ satisfy S(L,L′) if there exist γ ∈ O+(V) and δp ∈ Θ(Vp): L′ = γδpL ∀ p.

This relation is an equivalence relation intermediate to the class and genus.
Transitivity: suppose L,L′,L′′ satisfy S(L,L′) and S(L′,L′′). Then there are γ1, γ2 ∈ O+(V) and
β1p, β2p ∈ Θ(Vp) such that L = γ1β1pL′ and L′ = γ2β2pL′′ for each prime p. Combining these,

L = γ1β1pγ2β2pL′′ = (γ1γ2)(γ
−1
2 β1pγ2β2p)L′′

for each prime p. Since γ1γ2 ∈ O+(V) and γ−1
2 β1pγ2β2p ∈ Θ(Vp), S(L,L′′) holds.

Spinor Genera: the equivalence classes {Lattices on V}/S. If S(L,L′) holds, write L ∈ spn(L′).

Lemma (Cassels)
1. The number of spinor genera in any genus is finite and a power of 2.
2. For all n ≥ 3 there exist lattices whose genus contains multiple spinor genera.
3. If (V, ϕ) has dimension n ≥ 3, L ⊂ V, ϕ takes integral values on L, and gen(L) contains multiple

spinor genera, then either there exists p > 2: p
n(n−1)

2 | det(L), or 2n(n−3)/2+⌊(n+1)/2⌋ | det(L).



The Spinor Genus
Equivalence using ker θ = Θ(Vp) ⊴ O+(Vp)

Definition: L and L′ satisfy S(L,L′) if there exist γ ∈ O+(V) and δp ∈ Θ(Vp): L′ = γδpL ∀ p.

This relation is an equivalence relation intermediate to the class and genus.
Transitivity: suppose L,L′,L′′ satisfy S(L,L′) and S(L′,L′′). Then there are γ1, γ2 ∈ O+(V) and
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L = γ1β1pγ2β2pL′′ = (γ1γ2)(γ
−1
2 β1pγ2β2p)L′′

for each prime p. Since γ1γ2 ∈ O+(V) and γ−1
2 β1pγ2β2p ∈ Θ(Vp), S(L,L′′) holds.

Spinor Genera: the equivalence classes {Lattices on V}/S. If S(L,L′) holds, write L ∈ spn(L′).

Lemma (Cassels)
1. The number of spinor genera in any genus is finite and a power of 2.
2. For all n ≥ 3 there exist lattices whose genus contains multiple spinor genera.
3. If (V, ϕ) has dimension n ≥ 3, L ⊂ V, ϕ takes integral values on L, and gen(L) contains multiple

spinor genera, then either there exists p > 2: p
n(n−1)

2 | det(L), or 2n(n−3)/2+⌊(n+1)/2⌋ | det(L).



The Spinor Genus: Binary Case over the Integers

Consider primitive integral binary quadratic forms f,g over Z.

EstesPall73, Theorem: If f and g are in the same genus, f and g are in the same spinor genus if and
only if f = gk4 for some k, under Gauss composition.

Equivalently for lattices, L and L′ are in the same spinor genus iff L′−1L ∈ C(Ol(L′))4.

Q: can we extend this to forms over number fields? And can it be computed efficiently?

Theorem (BiasseSong16, Class Group Quantum Computation)
Under GRH there is a quantum algorithm for computing the class group of an orderO in a number
field K which runs in polynomial time in n = deg(K) and log(|∆|), where∆ is the discriminant ofO.

Imperial College London On the Spinor Genus and the Distinguishing Lattice Isomorphism Problem 13/12/2024
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The Spinor Genus: Binary Case over Number Fields
Ingredients for a Quantum Algorithm
f,g anisotropic binary quadratic forms overOF ⇒ f,g correspond to lattices of rank 2 overOF in V.
V is a regular binary quadratic space over a number field F.
Fix a basis such that V ∼= F(

√
−d) for some d. WriteOV for the ring of integers of F(

√
−d).

Recall the left order isOl(L2) := {x ∈ V : xL2 ⊂ L2} ⊂ V, and a lattice is a left ideal in its left order.

Lemma (EarnestEstes80)
A necessary and sufficient condition that L1 be in spn(L2) is that L1L−1

2 be in spn (Ol(L2)).

SetH(O) = gen(O)/ spn(O). For anOF-orderO ⊂ V, let I(O) = group of invertible frac. O-ideals,
and P(O) = subgroup of principal invertible frac. ideals. Set C(O) = I(O)/P(O).

Lemma (EarnestEstes81)
Let F be a number field andOF a PID. LetO be a degree 2 order overOF. ThenH(O) ∼= C(O)2/C(O)4.

So spn(O)/ cls+(O) ∼= C(O)4, and lattices L1,L2 ⊂ V in the same genus are in the same proper
spinor genus iff L1L−1

2 is a quartic residue in the class group of the left order of L2 in V.
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The Spinor Genus: Binary Case over Number Fields
Theorem
LetOF be a PID. Let f, g be anisotropic integral binary quadratic forms overOF in the same genus.
Let V be the quadratic space containing Lf, Lg. Then Lf · L−1

g generates an ideal coprime to the
conductor ofOl(Lg) inOV ⇒ a quantum poly. time algorithm to decide if f ∈ spn(g).

Proof, simple case: Ol(Lg) is a maximal order.
1. f,g are anisotropic⇒ V is isomorphic to a quadratic field extension of F.
Compute a basis ofOl(Lg) and so compute the class group, obtaining a generating set of prime
ideals for C(Ol(Lg)) in quantum poly. time + their defining relations.
2. The relations form a lattice Λ, and C(Ol(Lg)) ∼= Zn/Λ via I 7→ (e1, ..., en) + Λ for I =

∏n
i=1 p

ei
i .

3. Zn/Λ is an abelian group⇒C(Ol(Lg)) ∼= ⊕iZ/diZ for some integers di, where the factors di are
obtained by the quantum algorithm. We want the image of Lf · L−1

g in⊕iZ/diZ.
4. Ol(Lg) a maximal order⇒ can write Lf · L−1

g as a product of primes in our generating set, reduced
mod the relations between the prime ideals. Map Lf · L−1

g 7→ (f1, ..., fn) + Λ for some exponents fi.
5. The algorithm also outputs vectors gi of order di which form a basis of Zn/Λ ∼= ⊕iZ/diZ [Cohen].
6. To test for quartic residuosity: write (f1, ..., fn) =

∑
i λigi for some λi ∈ Z/diZ, i = 1, ..., n. As a

matrix-vector equation: (f1, ..., fn)T = G · λ. Compute G−1 · (f1, ..., fn)T = λ; if λi = 4γi mod di for
some γi ∈ Z/diZ and all i = 1, ..., n, conclude that Lf · L−1

g is a quartic residue in C(Ol(Lg)).
7. If Lf · L−1

g is a quartic residue in C(Ol(Lg)), then f ∈ spn(g); otherwise, f 6∈ spn(g).
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4. Ol(Lg) a maximal order⇒ can write Lf · L−1

g as a product of primes in our generating set, reduced
mod the relations between the prime ideals. Map Lf · L−1

g 7→ (f1, ..., fn) + Λ for some exponents fi.
5. The algorithm also outputs vectors gi of order di which form a basis of Zn/Λ ∼= ⊕iZ/diZ [Cohen].
6. To test for quartic residuosity: write (f1, ..., fn) =

∑
i λigi for some λi ∈ Z/diZ, i = 1, ..., n. As a

matrix-vector equation: (f1, ..., fn)T = G · λ. Compute G−1 · (f1, ..., fn)T = λ; if λi = 4γi mod di for
some γi ∈ Z/diZ and all i = 1, ..., n, conclude that Lf · L−1

g is a quartic residue in C(Ol(Lg)).
7. If Lf · L−1

g is a quartic residue in C(Ol(Lg)), then f ∈ spn(g); otherwise, f 6∈ spn(g).



The Spinor Genus: Binary Case over Number Fields
Consequences

Let f, g be anisotropic integral binary quadratic forms overOF in the same genus; V be the quadratic
space containing Lf, Lg; and Lf · L−1

g generate an ideal coprime to the conductor ofOl(Lg) inOV.

Corollary
Suppose gcd(|C(Ol(Lg))|, 2) = 1. Then f ∈ spn(g).

Corollary
Let F be the maximal totally real subfield ofQ(ζn) and n ∈ S := {4, 8, 16, 32, 64, 128, 256} (and
assuming GRH, n ∈ S ∪ {512}). Then there is a quantum poly. time algorithm to decide if f ∈ spn(g).

Corollary
Let F = Q(ζn) be a cyclotomic field and

n ∈ {1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 24, 25, 27, 28, 32, 33, 35, 36, 40, 44, 45, 48, 60, 84}

Then there is a quantum poly. time algorithm to decide if f ∈ spn(g).
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Thank you.
Questions?
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