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Information for Candidates:

Notation: (a)

(b)
(©)

(d)
(€)

Information Theory

Random variables are shown in a sans serif typeface. Thus x,x, X denote
a random scalar, vector and matrix respectively. The alphabet of a discrete
random scalar, x , is denoted by X and its size by |X|.

X, denotes the sequence x,, X,, -, X,, .
The normal distribution function is denoted by:
N(x; 11,0%) = (270 ) " exp(-e(x - 1) ?)

@ denotes the exclusive-or operation.

logx = :n_>2< denotes logarithm to base 2.
n
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The Questions

1. (a) Show that, for a discrete random variable x with alphabet size |x|= N, the

maximum value of H(x) is obtained when all members of X have equal
probability. You may assume without proof that for any probability mass vectors

p and g, D(p|lq)=E,{~logq(X)j-H(p)=0.

(b) The value, x, obtained when a biased die is thrown can take the possible values
v=[L 2,---, 6] with probabilities p=[p,, p,,---, Ps]. The expected value of x is

known and is equal to .

(i)  Using the method of Lagrange multipliers or otherwise, show that the p that
maximizes H(x) subject to the constraints p'v=q and Zp =1, is of the

form p =[ab,ab?,---,ab°]" .
(i) Show that b satisfies (q—6)b° +(q—5)b° +...+(q-1)b=0

(c) Give asimplified expression for H(x) in terms of a, b and q and determine its
value when b=2.

(d) Determine the values of a, b and H(x) when q=3.5.
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2. The sequence {x;} arises from a stationary binary Markov process with transition
matrix

Q_(l—r r j

q 1-q

Table 2.1 gives the probabilities of all possible 4 symbol sequences for the particular
case g=0.06 and r =0.04.

(@) Show that the only probability mass vector satisfying Q'p=p is [5]
p= [ qir+o)™* r(r +q)‘l]T . Explain the significance of this uniqueness.

(b) For the particular case q=0.06 and r =0.04, calculate the entropy H(x;) and 5]
the entropy rate of the process H(X). Explain why these two quantities are not
equal in value and explain the significance of the difference for coding the
sequence efficiently.

(c) The sequence {x;} represents the 2'° pixels of a binary image for which q=0.06
and r =0.04. Determine the expected number of bits needed to code the entire
image for each of the following codes:
() Each pixel is encoded individually using 1 bit. [2]

(i) {x;} is divided into groups of 3 consecutive values and a Huffman code [4]
used to encode each group.

(iii) The sequence y,; = x, @ X, , is formed by exclusive-oring each pixel with the

previous one (with the initial value x,=0) . Then {y,} is divided into 3]
groups of 3 consecutive values and a Huffman code used to encode each
group.

(d) Explain how your answers to (c) related to those of (b). [1]

X p(x) X p(x)
0000 |0.5308416 | 1000 | 0.0221184
0001 |0.0221184 ] 1001 | 0.0009216
0010 |0.0013824 | 1010 | 0.0000576
0011 |0.0216576 | 1011 | 0.0009024
0100 |0.0013824 | 1100 | 0.0216576
0101 | 0.0000576 | 1101 | 0.0009024
0110 |0.0013536 | 1110 | 0.0212064
0111 |0.0212064 | 1111 | 0.3322336

Table 2.1
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3. (a) Provethat
(i) Hx|2)=)Hxlz=2)p(z=12) [4]

zef

(i) 10Gy12)=21(xy|z=2)p(z=2) [4]

zel

(b) Figure 3.1 shows a communications system containing a binary symmetric
channel. The channel is shown in Figure 3.2 and has an error probability f(z)
whose value is a known function of a binary random variable z which takes a
value 0 or 1 with equal probability.
For each of the following cases, determine the capacity of the channel by deriving
the maximum value of | (w;w). You may assume without proof that the capacity
of a binary symmetric channel with error probability q is equal to 1-H(q).

(i)  Neither the encoder nor the decoder knows the value of z. [2]
(i)  Both the encoder and decoder know the value of z. [2]
(iii) The decoder knows the value of z but the encoder does not. [2]
(iv) The encoder knows the value of z but the decoder does not. [2]

(c) For the specific case in which f(0)=0 and f (1) =1, give encoding and decoding

algorithms that allow binary information to be sent through the system at its full
capacity for each of the situations (i), (ii), (iii) and (iv) of part (b). [4]

N
w X : w
—»| Encoder —» Noisy —y> Decoder —»
Channel
Figure 3.1
1-f(z)
0 0
2)
X f(z Y
1
1-f(2)
Figure 3.2
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4.  For a real-valued continuous random variable x with a known probability density
function p(x), we define the Information Rate Distortion function, R(D), as

R(D) = min I (x; X) overall p(&| x)such that E, . ( (x - ' )< D

(@ If p(x)=N(x;0,6%), justify each of the following steps in deriving a lower
bound for R(D) and state the conditions for equality in steps (iii), (iv), (v) and
(vi). You may assume without proof that h(x) =%log27ec”.

A O -
I(x;x)=h(x)—h(x]|x)
(ii) A
= Ylog2meo’ —h(x — x| X)

(i) .
> Ylog27zec? —h(x — x)

Yy, log 27e? — Y5 log(27e Var(x — X))

)
> Ylog27mec? —Ylog 27eD

(vi) 2
Hence R(D) > max(l/z Iog%,o]

(b) z andZz are complex-valued random variables and the real and imaginary parts of
z, z, and z,, are independent. Show that 1(z;2)>1(z;Z25)+1(2,;2,) and
state the conditions for equality.

(c) We wish to quantise a sequence of independent identically-distributed complex
random numbers, {z,}. The real and imaginary parts of z, are independent and

follow zero-mean Gaussian distributions with variances of 4 and 1 respectively.
The quantisation distortion is defined by D = E(‘z —2‘2).

(1)  Assuming that the bounds of parts (a) and (b) are attainable, prove that
R(D)=2-logD provided that D<2.

(i) Determine expressions for R(D) for all values of D and in each case, state
the range of D for which they apply.
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5 (3

(b)

(©

x and y are correlated discrete random variables and we form an estimate
x =f(y) using a deterministic function f(). We define a binary random

variable e to equal 0 if x =x and 1 if x = x . Justify each of the steps in the
following where p, is the probability that x = x :

Hx1y)+H(ely, x)= Hely)+ H(x|y.e)

= H(X|y)(i£i) H(e)+H(x|y,e)
2 H(e)+ H(x|y.e=0)—p.)+ H(x|y.e=D)p,
2 14 l0g(| X|-1)p,

Figure 5.1 shows a communications system whose input w takes one of 2™
equiprobable values and is converted into a sequence x,, of n values for

transmission through the Gaussian channel. The channel output y,.. is decoded to
generate an estimate w of w with an error probability p{" that tends to 0 as
n — oo. Assuming that the capacity of a Gaussian channel with noise variance N

and average power constraint P is 1/zlog(1+ PN’l), justify each step in the
following argument

0] (ii)
nRZH(W): I(W;yl:n)+H(W|yJ;n)
(iii)
< A (X5 Vi) T HW | Vi)

(igV)Zn:I(Xi;yi)+H(W|yxn)

i=1
) B
< snlog(l+ PN )+1+nRp”

Explain carefully why this implies for both large and small n that if
R>% Iog(1+ PN ‘1) there is a non-zero lower bound for p{™.

(1)  The bandwidth of a DAB (Digital Audio Broadcasting) digital radio channel
is 1.537 MHz. If the total signal to in-band noise ratio is 14 dB, calculate the
theoretical maximum data rate. You may assume that a continuous time
Gaussian channel with bandwidth B is equivalent to a discrete time channel
with 2B transmissions per second and the same in-band signal-to-noise
ratio.

(i) The raw data rate of the DAB channel is 2.4 Mbit/s. Determine the lowest
possible signal-to-noise ratio in dB at which the system could operate.

y4
N
.9nR -9nR
H» Encoder X + Yy » Decoder LOZ»
Figure 5.1
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6. (a)

(b)

(©)

(d)

Information Theory 2006

Figure 6.1 shows which shows a channel with input and output alphabets
X=)= {1, 2,3, 4}. Determine the capacity of the channel for the special cases

(i) f=g=0, (i) f=g=% and (i) f =g =1.

Show that the input distribution to the channel may always be written in the form
p, =[@-a)1-b) (1-a)b a(l—c) ac] where 0<a,b,c<1. Hence show that
I(x;y)=H@)+@-a)l(x;y|x<2)+al(x;y|x>3).

Using the result of (b), express I(x ;y) interms of a, f and g and hence find the

value of a that maximises the channel capacity. You may assume without proof
that the capacity of a binary symmetric channel with error probability q is equal

to 1-H(q).

For each of the following cases, determine the channel capacity and the input
distribution p, that attains it. In each case, comment briefly on the significance

of the result.

(i) f=g=025

(i) f=0, g=05
(iii) f=0, g=0.25

1 1
f
f
2 2
X < 1A -y
1-9
3 3
g
g
4 4
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2006 E4.40/SO20 Solutions

Key to letters on mark scheme: B=Bookwork, C=New computed example, A=New
analysis

1. (a) If wesetall elementsof g to N, then for any p we have:

0<D(pllg)=E,{-~logq(X)}—H(p) =—logN " —H (p)

[6B]
= H(p)<logN =H(q)
(b) (i) Using a Lagrange multiplier, we wish to maximize
J=H(x)+Apv' =—p" log(p)+Ap'V+ up'1=p" (Av—log(p) + 1)
g—‘;z(ﬂv—log(pﬂy)—logezo [6A]
= log(ep)=Av+u = p=e'2°2" =a2"
Hence a=e'2* and b=2*
Where x and A are chosen to ensure that p'1=1and p'v=gq.
(i) 0=q-p'v=p'1g-p'v=p'(1q-v) from which the result follows. [2A]
(c) Since loga=—loge and logh =4, we can write
logp =log(b)v +log(a)l
H(x)=-p" logp =—-log(b)p'v—log(a)p’1=—-qlogb—loga=— Iog(abq)
If b=2 then p'l=1 = a'=2(1+2+...+32)=126 .and [4A]
g=a(2+2x4+3x8+...+6x64) =642/126 =5.0952. Hence H (x)=1.882hits.
(d) From (a), the unconstrained entropy maximum is when all elements of p are 2A]

equal and this gives g =3.5. Thus the entropy maximum under the constraint that
g=3.5 will also have all elements of p equal. Thus a=1/6 and b=1. Hence
H(x) =log6 = 2.585 bits .
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2.

(@)

(b)

(©)

If p=[a b, then we require (Q"~1)p=0 < ra=gb < %:%. Since

we also require a+b=1 for a valid probability mass vector, the only solution is

p:[q(r+q)’l r(r+q)’1]T. This means that the Markov process has a unique

steady-state distribution and that it will converge to this regardless of the
distribution of x; .

For these values of q and r, we have p=[0.6 0.4] giving H(x,) = 0.971bits..

On the other hand,

H(X) = H(Xi |Xi—l)
=H (x| x5 =0)p(xiy =0)+H(x; | X,y =D p(xi, =1)
=H(r)x0.6+H(q)x0.4
=0.2423x0.6+0.3274x 0.4 =0.2764 bits

Thus, if we treat the {x,} as independent when coding, we will require at least

0.971 bits per symbol. If however we take advantage of the inter-symbol
correlations, we can reduce this to 0.2764 bits per pixel with a large enough block
size.

(i) We need 1 bit per pixel or 2'° = 65536 bits in total.

(i)  We create a Huffman tree in which the probabilities come from summing the
rows of table 2.1:

0
000 .55296 ; / 0
111 .35344 44771

0 0 10
001 .02304 /-048 094 71 1100
100 .02304 046 1 1110
011 .02256 Ly /1 1111
110 .02256 025 11010
010 .0014407.002: 1 110110
101 .00096 “1 110111

The average length is 1.662 bits for every 3 pixels giving
1+21845x1.662 = 36298.7 bits for the entire image. (the 1 arises because

2'® is not a multiple of 3)
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(iii) From the table of probabilities for 4 consecutive bits, we can them in pairs to

get the probabilities for the eight possible y triples:

y X|0 p(x|0) X|1 p(x|1) p

000 0000 | 0.5308416 | 1111 | 0.3322336 | 0.8630752
001 0001 |0.0221184 | 1110 | 0.0212064 | 0.0433248
100 0111 | 0.0212064 | 1000 | 0.0221184 | 0.0433248
010 0011 | 0.0216576 | 1100 | 0.0216576 | 0.0433152
011 0010 | 0.0013824 | 1101 | 0.0009024 | 0.0022848
110 0100 | 0.0013824 | 1011 | 0.0009024 | 0.0022848
101 0110 | 0.0013536 | 1001 | 0.0009216 | 0.0022752
111 0101 | 0.0000576 | 1010 | 0.0000576 | 0.0001152
Hence we can construct the Huffman tree:

000 .863 . 0
001 .043 0879 137 1
100 .043 1 0 1

010 .043 ] 0 .050

011 .0027.005 0071

110 .002 . 1 .

101 .0027.002

111 .0001

This gives an average of 1.288 bits for every 3 pixels to give a total of

1+21845x1.288 = 28132.3 bhits for the entire image.

(d) Both approaches would achieve the entropy limit of 1+65535x0.2764 =18115 if
the block size is made large enough. However, by performing the exclusive or
operation, we squeeze more of the probability into the most common case (y=000)
and allow the Huffman code to perform better. Even so, the bit requirement in (iii)

is substantially larger than optimum.
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3. (& ()

H(x|2) = E ~log p(x| 2)= 3"~ p(x,2)log p(x| ) el
- - p(@)p(x|2) 100 p(x|2) - 3 p(2). - p(x|210g p(x| 2
=le(z)H(x|z) o
(i) )
iy 12)=H(x | 2)+ HY | 2)-H(x,y | 2) 8]

=Y (H(x|z=2)+HW|z=2)-H(x,y|z=12))p(z=2)

zel

=Y I(x;ylz=2)p(z=12)

zel

(b) (i) From the data processing theorem, I(w;w)<I1(x;y). If neither the

transmitter or receiver know the value of z, then we just have a binary  [2A]
symmetric channel with an error probability of f =% (0)+%f(1).

I(x;y)=HW)-HW[x)=H¥)-H(f)<1-H(f)
with equality iff ) is uniform which in turn is iff x is uniform.

(i) If both transmitter and receiver know 2z, then we want to maximize
I (x;y|Zz).From part (a)(i):

1(xiy12)=3 1(xiy | 2=2)p(z =2) [2A]
zel
<(@L-H(f(0)p(z=0)+[L-H(f@))p(z=1)
=1-%H(f(0))-%H(f (1))
with equality, as before, when x is uniform. This will in general be greater
than the value in part (i) due to the concavity of H(f).
(iii) If only the receiver knows the value of z, then w =w(y, z) and we need to [2A]
maximize 1(x;y,z), that is, the information that y and z together give
you about x . From the chain rule for mutual information:
l(x;y,z)=1(x;2)+1(x; )| 2)
<0+1-%H(f(0))-%2H(f({2)
where 1(x;z)=0 since they are independent. As before, equality arises
when x is uniform.
(iv) If only the transmitter knows the value of z, then x = x(w, z) and we have
a markov chain (w,z) — (x,z) — y thus [2A]

l(w,z;y)<1(x,z;y)
=HW)-HW[x,2)
=HW)-HWI[x,2=0)p(z=0)-H(|x,z=1)p(z=1)
<1-%H(f(0))-%H(f (1))

Information Theory: E4.40, ISE4.51, SO20 Solutions 2006 Page 4 of 8



(c) Wehaveinallcases y=x®~z

(i) In this case f=%f0)+%f(l)=% = H(f)=1. Hence channel
capacity is 0 and the encoding/decoding scheme doesn’t matter.

(i) Set x=w and w =y ® z =w for error-free transmission.
(iii) Set x =w and w = y ® z =w for error-free transmission.

(iv) Set x =w @z and w = y =w for error-free transmission. [4A]
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4. (@ (i) Definition of mutual information
(i) h(x)=%log2zec’® given in question. h(x|x)=h(x—-x|x) because of
translational invariance.

(iii) Conditioning reduces entropy. We have equality if the error, x —x, is
independent of x .

(iv) A Gaussian has the maximum entropy for a given variance. Thus it is always
true that h(x —x) sl/zlog(ZﬂeVar(X—)?)). We have equality if the error,
X — X , is Gaussian.

(v) Var(x-x)= E((x -xJ )— (E(x-x)f < E((x—)?)z)g D from the constraint
on p(X|x). We have equality if the error, x—x, is zero-mean with
variance D.

2

(vi) R(D)=min(l(x;x))> min(%log%} but also I(x;x)>0 so the result

[7B]
follows. We have equality if we can find a p(X|x) that gives equality in
steps (iii), (iv) and (v) or alternatively, if the variance of Var(x) <D when
we can just set x = E(x).
(b)
|(Z;2)=h(ZR,Z|)—h(ZR,Z| |2R72|)
=h(zg)+h(z,)-h(zg |2R’2|)_h(zl |ZAI'ZAR’ZR) [5A]
>h(zz)+H(z,)-h(z |2R)_h(zl |2|)
=1(zy |2R)+I(ZI |2|)
We have equality provided that z, is independent of z, and also z, is
independent of Z, (true for most reasonable encodings).
(c) Wehave D=D,+D, =E (25 -23)* +E (z, - %,)?
(i)
I = max 1/z~logi+1/zlog] !
De Dg D - Dy
=Y%loge (In4—In D, —In(D-Dy))
=Y%loge -1, =0when D, =%D [5C]
R DR MR

Hence | :1/zlogg+1/zlogg
D D
=% (3-logD+1-logD)=2-logD

This expression IS valid provided that
1D = Dy, D, <min(c?,6?)=min(4,1)=1, that is when D<2.
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(ii) If D>5 then we set Z=0 and R(D)=0. If 2< D <5, then we set Z, =0
and just encode z, with distortion D —1. Hence

2—logD D<2 [3C]
R(D)={1-%log(D-1) 2<D<5
0 D>5

5. (@ (i) Bothexpressionsare equal to H(x,e|)y) decomposed in alternative ways.

(i) This follows from the previous line since H(e|y,x)=0 and
H(e|y)<H(e).

(iii) Decomposition of conditional entropy:
E,ye—logp(x|y.e)= Z p(e =e)E,, —log p(x|y.e)
=Y ple=e)H(x|y,e)
= |fl(X |ly.e=0)(A-P)+H(x|y.e=1)p,

(iv) H(e)<1 since binary variable, H(x|y,e=0)=0 since when e=0,

x=x=1(), H(x|y,e=1) < X|-1 since x could have any value except L7E]
x="f().
(b) (i) Since the members of WV are equiprobable, H(w)=1log|W|=nR
(it)  Definition of mutual information
(iii) Data processing inequality since x = f (w)
[7B]

(iv) Independence bound
(v) Capacity of single-use Gaussian channel

If we divide through by n, then as n — o« the second and third terms tend to zero
implying that if p{™ that tends to 0, then we must have R <% Iog(1+ PN ‘l).

Suppose that for some n, there is no lower bound to p{™ . Then for any & and n

we can find a code with p{™ <n,n"'¢. By dividing a block of length n into ny™n
sub blocks of length n, and encoding each of them separately, we have a total  [3A]

error probability that is less than n;'nx p{"® = ¢ . Thus we can make a code with
arbitrarily long block size with total error probability less than ¢ .

(c) (i) C=2Bx¥log(l+P/N)=Blog(l+P/N)
Inour case, P/ N =14 dB =25.1 giving a capacity of 7.23 MBit/s
iy P/N=2%_-1
In our case C/B =1.56 giving P/N =2.9dB

[2C]

[1C]
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6. (a)

(b)

(©)

(d)

(i)  Here there are no errors so the capacity is 2 bits per transmission.

(i)  Here we cannot distinguish between inputs 1 and 2 or between 3 and 4. Thus
the channel capacity is reduced to 1 bit per transmission.

(iii)) Now crossovers are certain, so the capacity reverts to 2 bits.

If Px :[pl P, Ps p4]v then we can set a= Ps+ Py b= pz(p1+ pz)_l and
c=p,(p;+p,)". Clearly all these lie in the range 0 to 1.

For convenience, we define two new binary random variables: ¢ ={x iseven}
and v ={x >3}. Then

LX) =1 vy) =1 y)+ 1w y|v)
=HWV)-HWV|y)+@-a)l(v;y|v=0)+al(v;y|v =1
=H(a)-0+(1-a)l(x;y|v=0)+al(x;y|v =1

Note that H(v|y)=0 since knowledge of ) implies knowledge of v. Also

I(u;y|v)=1(x;y|v) since if v is known then ¢ and x are equivalent.

We are told to assume I (x;y|v=0)<1-H(f).Hence

I(x;y)<H(a)+(1-a)d-H(f))+al-H(g))
=1+H(@)-H(f)+a(H(f)-H(g))=C

with equality if b=c=%.

dC-1 - dH (a)

=0
da da

—  al_1=2H@-H®

= a=(1+2"@HOY

~log™_2 ~H(g)-H(1)

(i) If f=g then we take a=% giving a uniform p, and a capacity of
C=2-H(f) from the formula in part (d). This makes sense since we can

transmit one error-free bit as ¥ and the chosen subchannel has a capacity of
1-H(f).For f =g=0.25 this gives C =1.189 bits..

(i) Here a=(1+21’°)_1:1/3 and so p,=[2 2 1 1]/6. The capacity is
C=1+H(a)-a=1+0.918-0.333=1log3=1.585bits. This is effectively a

noiseless channel with ternary inputs and outputs since output 3 and 4 are
indistinguishable.

(iii) Thistime a=(1+2"C»°)" = (1+2°*)]" = 0.363 which gives:

p,=[0.318 0.318 0.182 0.182]
C=1+H(a)-aH(g)=1+0.945-0.363x0.811=1.651bits

Thus we get a little bit more capacity than in part (ii).
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