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Information for Candidates: 

 

Notation: (a) Random variables are shown in a sans serif typeface. Thus Xx,,x  denote 
a random scalar, vector and matrix respectively. The alphabet of a discrete 
random scalar, x , is denoted by X  and its size by X . 

 (b) n:1x denotes the sequence nxxx ,,, 21 L . 

 (c) The normal distribution function is denoted by: 
( ) ))-½(xexp(2),;( 22½22 −−

−= σμπσσμxN  

 (d) ⊕  denotes the exclusive-or operation. 

 (e) 
2ln

lnlog xx = denotes logarithm to base 2.  
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The Questions 

 

1. (a) Show that, for a discrete random variable x  with alphabet size N=X , the 
maximum value of )(xH  is obtained when all members of X  have equal 
probability. You may assume without proof that for any probability mass vectors 
p  and q , { } 0)()(log)||( ≥−−= pqp p HXqED . 

(b) The value, x , obtained when a biased die is thrown can take the possible values 
]6,,2,1[ L=v  with probabilities ],,,[ 621 ppp L=p . The expected value of x  is 

known and is equal to q . 

(i) Using the method of Lagrange multipliers or otherwise, show that the p  that 
maximizes )(xH  subject to the constraints qT =vp  and ∑ =1p , is of the 

form Tababab ],,,[ 62 L=p . 

(ii) Show that b  satisfies 0)1()5()6( 56 =−++−+− bqbqbq K  

(c) Give a simplified expression for )(xH  in terms of a , b  and q  and determine its 
value when 2=b . 

(d) Determine the values of a , b  and )(xH  when 5.3=q . 

 

[6] 

[6] 

[2] 

[4] 

[2] 



Information Theory 2006 Page 3 of 7 

2. The sequence }{ ix  arises from a stationary binary Markov process with transition 
matrix 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

qq
rr

1
1

Q  

Table 2.1 gives the probabilities of all possible 4 symbol sequences for the particular 
case 06.0=q  and 04.0=r . 

(a) Show that the only probability mass vector satisfying ppQ =T  is 

[ ]T
qrrqrq 11 )()( −− ++=p . Explain the significance of this uniqueness. 

(b) For the particular case 06.0=q  and 04.0=r , calculate the entropy )( iH x  and 
the entropy rate of the process )(XH . Explain why these two quantities are not 
equal in value and explain the significance of the difference for coding the 
sequence efficiently.  

(c) The sequence }{ ix  represents the 162  pixels of a binary image for which 06.0=q  
and 04.0=r . Determine the expected number of bits needed to code the entire 
image for each of the following codes: 

(i) Each pixel is encoded individually using 1 bit. 

(ii) }{ ix  is divided into groups of 3 consecutive values and a Huffman code 
used to encode each group. 

(iii) The sequence 1−⊕= iii xxy  is formed by exclusive-oring each pixel with the 
previous one (with the initial value 00 =x ) . Then }{ iy  is divided into 
groups of 3 consecutive values and a Huffman code used to encode each 
group. 

(d) Explain how your answers to (c) related to those of (b). 

 
x p(x) x p(x) 

0000 0.5308416 1000 0.0221184
0001 0.0221184 1001 0.0009216
0010 0.0013824 1010 0.0000576
0011 0.0216576 1011 0.0009024
0100 0.0013824 1100 0.0216576
0101 0.0000576 1101 0.0009024
0110 0.0013536 1110 0.0212064
0111 0.0212064 1111 0.3322336

Table 2.1 

 

 

 [5] 

 [5] 

 [2] 

 [4] 

 [3] 

 [1] 
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3. (a) Prove that 

(i) ∑
∈

===
Zz

zpz|HH )()()|( zzxzx  

(ii) ∑
∈

===
Zz

zpzII )()|;()|;( zzyxzyx  

(b) Figure 3.1 shows a communications system containing a binary symmetric 
channel. The channel is shown in Figure 3.2 and has an error probability )(zf  
whose value is a known function of a binary random variable z  which takes a 
value 0 or 1 with equal probability. 

For each of the following cases, determine the capacity of the channel by deriving 
the maximum value of )ˆ;( wwI . You may assume without proof that the capacity 
of a binary symmetric channel with error probability q  is equal to )(1 qH− . 

(i) Neither the encoder nor the decoder knows the value of z . 

(ii) Both the encoder and decoder know the value of z . 

(iii) The decoder knows the value of z  but the encoder does not. 

(iv) The encoder knows the value of z  but the decoder does not. 

(c) For the specific case in which 0)0( =f  and 1)1( =f , give encoding and decoding 
algorithms that allow binary information to be sent through the system at its full 
capacity for each of the situations (i), (ii), (iii) and (iv) of part (b). 

 

Noisy
Channel

x y
Encoder

w
Decoder

ŵ

 

Figure 3.1 

0

1

0

1

yx
f(z)

1–f(z)

1–f(z)

f(z)

 

Figure 3.2 

 

 [4] 

 [4] 

 [2] 

 [2] 

 [2] 

 [2] 

 [4] 
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4. For a real-valued continuous random variable x  with a known probability density 
function )(xp , we define the Information Rate Distortion function, )(DR , as 

( )( ) DExxpIDR ≤−= 2
ˆ,

ˆsuch that  )|ˆ( allover  )ˆ;(min)( xxxx xx  

(a) If ),0;()( 2σxNxp = , justify each of the following steps in deriving a lower 
bound for )(DR  and state the conditions for equality in steps (iii), (iv), (v) and 
(vi). You may assume without proof that 22log½)( σπeh =x . 

( )( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥

−≥

−−≥

−−≥

−−=

−=

0,log½max)(   Hence

2log½2log½

ˆVar2log½2log½

)ˆ(2log½

)ˆ|ˆ(2log½

)ˆ|()()ˆ;(

2(vi)

2
(v)

2
(iv)

2
(iii)

2
(ii)

(i)

D
DR

eDe

ee

he

he

hhI

σ

πσπ

πσπ

σπ

σπ

xx

xx

xxx

xxxxx

 

(b) z  and ẑ  are complex-valued random variables and the real and imaginary parts of 
z , Rz  and Iz , are independent. Show that )ˆ;()ˆ;()ˆ;( IIRR III zzzzzz +≥  and 
state the conditions for equality. 

(c) We wish to quantise a sequence of independent identically-distributed complex 
random numbers, }{ iz . The real and imaginary parts of iz  are independent and 
follow zero-mean Gaussian distributions with variances of 4 and 1 respectively. 
The quantisation distortion is defined by ( )2

ẑz −= ED . 

(i) Assuming that the bounds of parts (a) and (b) are attainable, prove that 
DDR log2)( −=  provided that 2≤D . 

(ii) Determine expressions for )(DR  for all values of D  and in each case, state 
the range of D  for which they apply. 

 

 [7] 

 [5] 

 [5] 

 [3] 
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5. (a) x  and y  are correlated discrete random variables and we form an estimate 
)(ˆ yx f=  using a deterministic function )(f . We define a binary random 

variable e  to equal 0 if xx =ˆ  and 1 if xx ≠ˆ . Justify each of the steps in the 
following where ep  is the probability that xx ≠ˆ : 

e

ee

p

peHpeHH

HHH

HHHH

)1|log(|1

)1,|()1)(0,|()(

),|()()|(

),|()|(),|()|(

(iv)

(iii)

(ii)

(i)

−+≤

=+−=+=

+≤⇒

+=+

X

yxyxe

eyxeyx

eyxyexyeyx

 

(b) Figure 5.1 shows a communications system whose input w  takes one of nR2  
equiprobable values and is converted into a sequence n:1x  of n  values for 
transmission through the Gaussian channel. The channel output n:1y  is decoded to 
generate an estimate ŵ  of w  with an error probability )(n

ep  that tends to 0 as 
∞→n . Assuming that the capacity of a Gaussian channel with noise variance N  

and average power constraint P  is ( )11log½ −+ PN , justify each step in the 
following argument 

( ) n
e

n

n

i
ii

nnn

nn

nRpPNn

HI

HI

HIHnR

+++≤

+≤

+≤

+==

−

=
∑

11log½

)|();(

)|();(

)|();()(

1
(v)

:1
1

(iv)

:1:1:1

(iii)
:1:1

(ii)(i)

ywyx

ywyx

ywyww

 

Explain carefully why this implies for both large and small n  that if 
( )11log½ −+> PNR  there is a non-zero lower bound for )(n

ep . 

(c) (i) The bandwidth of a DAB (Digital Audio Broadcasting) digital radio channel 
is 1.537 MHz. If the total signal to in-band noise ratio is 14 dB, calculate the 
theoretical maximum data rate. You may assume that a continuous time 
Gaussian channel with bandwidth B  is equivalent to a discrete time channel 
with B2  transmissions per second and the same in-band signal-to-noise 
ratio. 

(ii) The raw data rate of the DAB channel is 2.4 Mbit/s. Determine the lowest 
possible signal-to-noise ratio in dB at which the system could operate. 

+

z

Encoder Decoderx yw∈1:2nR w∈0:2nR^

 

Figure 5.1 
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6. (a) Figure 6.1 shows which shows a channel with input and output alphabets 
{ }4,3,2,1== YX . Determine the capacity of the channel for the special cases 

(i) 0== gf , (ii) ½== gf  and (iii) 1== gf .  

(b) Show that the input distribution to the channel may always be written in the form 
[ ]accababap )1()1()1)(1( −−−−=x  where 1,,0 ≤≤ cba . Hence show that 

)3|;()2|;()1()();( ≥+≤−+= xyxxyxyx aIIaaHI . 

(c) Using the result of (b), express );( yxI  in terms of gfa  and ,  and hence find the 
value of a  that maximises the channel capacity. You may assume without proof 
that the capacity of a binary symmetric channel with error probability q  is equal 
to )(1 qH− . 

(d) For each of the following cases, determine the channel capacity and the input 
distribution xp  that attains it. In each case, comment briefly on the significance 
of the result. 

(i) 25.0== gf  

(ii) 5.0,0 == gf  

(iii) 25.0,0 == gf  
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Figure 6.1 
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2006 E4.40/SO20 Solutions  

Key to letters on mark scheme: B=Bookwork, C=New computed example, A=New 
analysis 

 

1. (a) If we set all elements of q  to 1−N , then for any p  we have: 

{ }
)(log)(

)(log)()(log)||(0 1

qp

ppqp p

HNH

HNHXqED

=≤⇒

−−=−−=≤ −

 

(b) (i) Using a Lagrange multiplier, we wish to maximize 

λμ

λλμμλ

μλ

μλμλλ

2b  and  2   Hence
222)log(

0log))log((

))log(()log()(

1

1

==

==⇒+=⇒

=−+−=

+−=++−=+=

−

−

ea
aee

e
d
dJ

HJ TTTTT

vvpvp

pv
p

pvp1pvppppvx

 

Where μ  and λ  are chosen to ensure that 1=1pT  and qT =vp . 

(ii) ( )v1pvp1pvp −=−=−= qqq TTTT0  from which the result follows. 

(c) Since ea loglog −= μ  and λ=blog , we can write 

( )qTTT ababqabH

ab

logloglog)log()log(log)(

)log()log(log

−=−−=−−=−=

+=

1pvppp

1vp

x
 

If 2=b  then 126)3221(21 1 =+++=⇒= − KaT 1p  and 
0952.5126/642)64683422( ==×++×+×+= Kaq . Hence bits 882.1)( =xH . 

(d) From (a), the unconstrained entropy maximum is when all elements of p  are 
equal and this gives 5.3=q . Thus the entropy maximum under the constraint that 

5.3=q  will also have all elements of p  equal. Thus 6/1=a  and 1=b . Hence 
bits 585.26log)( ==xH . 

 

[6B] 

[6A] 

[2A] 

[4A] 

[2A] 
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2. (a) If [ ]Tba=p , then we require ( )
r
q

b
aqbraT =⇔=⇔=− 0pIQ . Since 

we also require 1=+ ba  for a valid probability mass vector, the only solution is 

[ ]Tqrrqrq 11 )()( −− ++=p . This means that the Markov process has a unique 
steady-state distribution and that it will converge to this regardless of the 
distribution of 1x . 

(b) For these values of q  and r , we have [ ]4.06.0=p  giving bits 971.0)( =iH x . 

On the other hand, 

bits2764040327406024230
4.0)(6.0)(

)1()1|()0()0|(
)|()(

1111

1

.....
qHrH

pHpH
HH

iiiiii

ii

=×+×=
×+×=

==+===
=

−−−−

−

xxxxxx
xxX

 

Thus, if we treat the }{ ix  as independent when coding, we will require at least 
0.971 bits per symbol. If however we take advantage of the inter-symbol 
correlations, we can reduce this to 0.2764 bits per pixel with a large enough block 
size. 

 (c) (i) We need 1 bit per pixel or bits 65536216 = in total. 

(ii) We create a Huffman tree in which the probabilities come from summing the 
rows of table 2.1: 

0

1

000
111
001
100
011
110
010
101

.55296

.35344

.02304

.02304

.02256

.02256

.00144

.00096

0
10

1

0

1

0

1

0

1

0

1

.046
.048

.025

.094
.447

0
10

1100
1110
1111

11010
110110
110111

.002

 
The average length is 1.662 bits for every 3 pixels giving 

7.36298662.1218451 =×+  bits for the entire image. (the 1 arises because 
162  is not a multiple of 3) 

[5A] 

[5C] 

[2A] 

[4C] 
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(iii) From the table of probabilities for 4 consecutive bits, we can them in pairs to 
get the probabilities for the eight possible y triples: 

 
y x|0 p(x|0) x|1 p(x|1) p 
000 0000 0.5308416 1111 0.3322336 0.8630752 
001 0001 0.0221184 1110 0.0212064 0.0433248 
100 0111 0.0212064 1000 0.0221184 0.0433248 
010 0011 0.0216576 1100 0.0216576 0.0433152 
011 0010 0.0013824 1101 0.0009024 0.0022848 
110 0100 0.0013824 1011 0.0009024 0.0022848 
101 0110 0.0013536 1001 0.0009216 0.0022752 
111 0101 0.0000576 1010 0.0000576 0.0001152 

Hence we can construct the Huffman tree: 

0

1

000
001
100
010
011
110
101
111

.863

.043

.043

.043

.002

.002

.002

.000

0

1

1

0

1

0

1
1

0

.050
.005

.002

.007

.087
0

100
101
110

11100
11101
11110
11111

0
0

1

.137

This gives an average of 1.288 bits for every 3 pixels to give a total of 
3.28132288.1218451 =×+  bits for the entire image. 

(d) Both approaches would achieve the entropy limit of 181152764.0655351 =×+  if 
the block size is made large enough. However, by performing the exclusive or 
operation, we squeeze more of the probability into the most common case (y=000) 
and allow the Huffman code to perform better. Even so, the bit requirement in (iii) 
is substantially larger than optimum. 

 

[3A] 

[1A] 
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3. (a) (i)  

( )∑

∑ ∑∑

∑

∈

∈ ∈

=

−=−=

−=−=

Z

Z X

z

z xzx

zx

zHzp

zxpzxpzpzxpzxpzp

zxpzxppEH

|)(

)|(log)|()()|(log)|()(

)|(log),()|(log)|(

,

,

x

zxzx

 

(ii)  

( )

∑

∑

∈

∈

===

==−=+==

−+=

Z

Z

z

z

zpzI

zpzHzHzH
HHHI

)()|;(

)()|,()|()|(
)|,()|()|()|;(

zzyx

zzyxzyzx
zyxzyzxzyx

 

(b) (i) From the data processing theorem, );()ˆ;( yxww II ≤ . If neither the 
transmitter or receiver know the value of z , then we just have a binary 
symmetric channel with an error probability of )1(½)0(½ fff += . 

)(1)()()|()();( fHfHHHHI −≤−=−= yxyyyx  

with equality iff y  is uniform which in turn is iff x  is uniform. 

(ii) If both transmitter and receiver know z , then we want to maximize 
)|;( zyxI . From part (a)(i): 

( ) ( )
))1((½))0((½1

)1())1((1)0())0((1

)()|;()|;(

fHfH
pfHpfH

zpzII
z

−−=
=−+=−≤

===∑
∈

zz

zzyxzyx
Z

 

with equality, as before, when x  is uniform. This will in general be greater 
than the value in part (i) due to the concavity of )( fH . 

(iii) If only the receiver knows the value of z , then ),(ˆˆ zyww =  and we need to 
maximize ),;( zyxI , that is, the information that y  and z  together give 
you about x . From the chain rule for mutual information: 

))1((½))0((½10
)|;();(),;(

fHfH
III

−−+≤
+= zyxzxzyx

 

where 0);( =zxI  since they are independent. As before, equality arises 
when x  is uniform. 

(iv) If only the transmitter knows the value of z , then ),( zwxx =  and we have 
a markov chain yzxzw →→ ),(),( thus 

))1((½))0((½1
)1()1,|()0()0,|()(

),|()(
);,();,(

fHfH
pHpHH

HH
II

−−≤
==−==−=

−=
≤

zzxyzzxyy
zxyy

yzxyzw

 

[4B] 

[4B] 

[2A] 

[2A] 

[2A] 

[2A] 
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(c) We have in all cases zxy ⊕=  

(i) In this case 1)(½)1(½)0(½ =⇒=+= fHfff . Hence channel 
capacity is 0 and the encoding/decoding scheme doesn’t matter. 

(ii) Set wx =  and wzyw =⊕=ˆ  for error-free transmission. 

(iii) Set wx =  and wzyw =⊕=ˆ  for error-free transmission. 

(iv) Set zwx ⊕=  and wyw ==ˆ  for error-free transmission. 

 

 [4A] 
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4. (a) (i) Definition of mutual information 

(ii) 22log½)( σπeh =x  given in question. )ˆ|ˆ()ˆ|( xxxxx −= hh  because of 
translational invariance. 

(iii) Conditioning reduces entropy. We have equality if the error, xx ˆ− , is 
independent of x̂ . 

(iv) A Gaussian has the maximum entropy for a given variance. Thus it is always 
true that ( )( )xxxx ˆVar2log½)ˆ( −≤− eh π . We have equality if the error, 

xx ˆ− , is Gaussian. 

(v) ( ) ( )( ) ( )( ) ( )( ) DEEE ≤−≤−−−=− 222 ˆˆˆˆVar xxxxxxxx  from the constraint 
on )|ˆ( xxp . We have equality if the error, xx ˆ− , is zero-mean with 
variance D . 

(vi) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≥=

D
IDR

2

log½min)ˆ;(min)( σxx  but also 0)ˆ;( ≥xxI  so the result 

follows. We have equality if we can find a )|ˆ( xxp  that gives equality in 
steps (iii), (iv) and (v) or alternatively, if the variance of D≤)(Var x  when 
we can just set )(ˆ xx E≡ . 

(b)  

)ˆ|()ˆ|(
)ˆ|()ˆ|()()(

),ˆ,ˆ|()ˆ,ˆ|()()(
)ˆ,ˆ|,(),()ˆ;(

IIRR

IIRRIR

RRIIIRRIR

IRIRIR

II
hhHh

hhhh
hhI

zzzz
zzzzzz

zzzzzzzzz
zzzzzzzz

+=

−−+≥

−−+=

−=

 

We have equality provided that Rz  is independent of Iẑ  and also Iz  is 
independent of Rẑ  (true for most reasonable encodings). 

(c) We have 22 )ˆ()ˆ( IIRRIR zzEzzEDDD −+−=+=  

(i)  

( )

DDD
DD

I

DD
DDD

e
dD
dI

DDDe
DDD

I

R
RRR

RR

RR
DR

log2)log1log3(½

2log½8log½   Hence

½ when 011log½

)ln(ln4lnlog½

1log½4log½max

−=−+−=

+=

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
−

=

−−−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+=

 

This expression is valid provided that 
( ) ( ) 11,4min,min,½ 22 ==≤= IRIR DDD σσ , that is when 2≤D . 

 [7B] 

 [5A] 

 [5C] 
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(ii) If 5≥D  then we set 0ˆ =z  and 0)( =DR . If 52 ≤≤ D , then we set 0ˆ =Iz  
and just encode Rz  with distortion 1−D . Hence 

⎪
⎩

⎪
⎨

⎧

>
≤<−−

≤−
=

50
52)1log(½1

2log2
)(

D
DD

DD
DR  

 

5. (a) (i) Both expressions are equal to )|,( yexH  decomposed in alternative ways. 

(ii) This follows from the previous line since 0),|( =xyeH  and 
)()|( eye HH ≤ .  

(iii) Decomposition of conditional entropy: 

epeHPeH

eHep

epEeppE

)1,|()1)(0,|(

),|()(

),|(log)(),|(log ,,,

=+−==

==

−==−

∑

∑

yxyx

yxe

yxeeyx

e

yx
e

eyx

ε

 

(iv) 1)( ≤eH  since binary variable, 0)0,|( ==eH yx  since when 0=e , 
)(ˆ yxx f== , 1||)1,|( −≤= XeH yx  since x  could have any value except 

)(ˆ yx f= . 

(b) (i) Since the members of  W  are equiprobable, nRH == ||log)( Ww  

(ii) Definition of mutual information 

(iii) Data processing inequality since )(wf=x  

(iv) Independence bound 

(v) Capacity of single-use Gaussian channel 

If we divide through by n , then as ∞→n  the second and third terms tend to zero 
implying that if )(n

ep  that tends to 0, then we must have ( )11log½ −+≤ PNR . 

Suppose that for some 0n  there is no lower bound to )( 0n
ep . Then for any ε  and n  

we can find a code with ε10
)( 0 −< nnp n

e . By dividing a block of length n  into nn 1
0
−  

sub blocks of length 0n  and encoding each of them separately, we have a total 
error probability that is less than ε=×− )0(1

0
n

epnn . Thus we can make a code with 
arbitrarily long block size with total error probability less than ε . 

(c) (i) )/1log()/1log(½2 NPBNPBC +=+×=  

In our case, 1.25dB 14/ ==NP  giving a capacity of 7.23 MBit/s 

(ii) 12/ / −= BCNP  

In our case 56.1/ =BC  giving dB 9.2/ =NP  
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6. (a) (i) Here there are no errors so the capacity is 2 bits per transmission. 

(ii) Here we cannot distinguish between inputs 1 and 2 or between 3 and 4. Thus 
the channel capacity is reduced to 1 bit per transmission. 

(iii) Now crossovers are certain, so the capacity reverts to 2 bits. 

(b) If [ ]4321 ppppp =x , then we can set 43 ppa += , 1
212 )( −+= pppb  and 

1
434 )( −+= pppc . Clearly all these lie in the range 0 to 1. 

For convenience, we define two new binary random variables: }even is {xu =  
and }3 { ≥= xv . Then 

)1;()0;()1(0)(
)1;()0;()1()|()(

);();();();(

=+=−+−=
=+=−+−=

+==

vyxvyx
vyuvyuyvv

vyuyvyvuyx

|aI|IaaH
|aI|IaHH

|II,II
 

Note that 0)|( =yvH  since knowledge of y  implies knowledge of v . Also 
);();( vyxvyu |I|I =  since if v  is known then u  and x  are equivalent. 

(c) We are told to assume )(1)0;( fH|I −≤=vyx . Hence 

( ) CgHfHafHaH
gHafHaaHI
=−+−+=

−+−−+≤
)()()()(1

))(1())(1)(1()();( yx
 

with equality if ½== cb . 

( ) 1)()(

)()(1

21

21

)()(1log)(01

−−

−−

+=⇒

=−⇒

−=
−

=⇒=
−

fHgH

fHgH

a

a

fHgH
a

a
da

adH
da

dC

 

(d) (i) If gf =  then we take ½=a  giving a uniform xp  and a capacity of 
)(2 fHC −=  from the formula in part (d). This makes sense since we can 

transmit one error-free bit as v  and the chosen subchannel has a capacity of 
)(1 fH− . For 25.0== gf  this gives bits 189.1=C . 

(ii) Here ( ) 3/121
101 =+=
−−a  and so [ ] 6/1122=xp . The capacity is 

bits 585.13log333.0918.01)(1 ==−+=−+= aaHC . This is effectively a 
noiseless channel with ternary inputs and outputs since output 3 and 4 are 
indistinguishable. 

(iii) This time ( ) ( ) 363.02121
1811.010)25.0( =+=+=
−−−Ha  which gives: 

[ ]
bits 651.1811.0363.0945.01)()(1

182.0182.0318.0318.0
=×−+=−+=

=
gaHaHC

px

 
Thus we get a little bit more capacity than in part (ii). 
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