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Claude Shannon

• C. E. Shannon, ”A mathematical theory 
of communication,” Bell System 
Technical Journal, 1948.

• Two fundamental questions in 
communication theory:

• Ultimate limit on data compression

– entropy

• Ultimate transmission rate of 
communication

– channel capacity

• Almost all important topics in 
information theory were initiated by 
Shannon

3

1916 - 2001



Origin of Information Theory

• Common wisdom in 1940s:

– It is impossible to send information error-free at a positive rate

– Error control by using retransmission: rate → 0 if error-free

• Still in use today

– ARQ (automatic repeat request) in TCP/IP computer networking

• Shannon showed reliable communication is possible for 
all rates below channel capacity

• As long as source entropy is less than channel capacity, 
asymptotically error-free communication can be achieved

• And anything can be represented in bits

– Rise of digital information technology
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Relationship to Other Fields
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Course Objectives

• In this course we will (focus on communication 
theory):
– Define what we mean by information.

– Show how we can compress the information in a 
source to its theoretically minimum value and show 
the tradeoff between data compression and 
distortion.

– Prove the channel coding theorem and derive the 
information capacity of different channels.

– Generalize from point-to-point to network information 
theory.
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Relevance to Practice

• Information theory suggests means of achieving 
ultimate limits of communication

– Unfortunately, these theoretically optimum schemes 
are computationally impractical

– So some say “little info, much theory” (wrong)

• Today, information theory offers useful 
guidelines to design of communication systems

– Polar code (achieves channel capacity)

– CDMA (has a higher capacity than FDMA/TDMA)

– Channel-coding approach to source coding (duality)

– Network coding (goes beyond routing)
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Books/Reading
Book of the course:

• Elements of Information Theory by T M Cover & J A Thomas, Wiley, 
£39 for 2nd ed. 2006, or £14 for 1st ed. 1991 (Amazon)

Free references

• Information Theory and Network Coding by R. W. Yeung, Springer 
http://iest2.ie.cuhk.edu.hk/~whyeung/book2/

• Information Theory, Inference, and Learning Algorithms by D 
MacKay, Cambridge University Press 
http://www.inference.phy.cam.ac.uk/mackay/itila/

• Lecture Notes on Network Information Theory by A. E. Gamal and 
Y.-H. Kim, (Book is published by Cambridge University Press)
http://arxiv.org/abs/1001.3404

• C. E. Shannon, ”A mathematical theory of communication,” Bell 
System Technical Journal, Vol. 27, pp. 379–423, 623–656, July, 
October, 1948.
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Other Information

• Course webpage:
http://www.commsp.ee.ic.ac.uk/~cling

• Assessment: Exam only – no coursework.

• Students are encouraged to do the problems in 
problem sheets.

• Background knowledge 
– Mathematics 

– Elementary probability

• Needs intellectual maturity
– Doing problems is not enough; spend some time 

thinking
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Notation

• Vectors and matrices
– v=vector, V=matrix

• Scalar random variables
– x = R.V, x = specific value, X = alphabet

• Random column vector of length N
– x = R.V, x = specific value, XN = alphabet

– xi and xi are particular vector elements

• Ranges
– a:b denotes the range a, a+1, …, b

• Cardinality
– |X| = the number of elements in set X
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Discrete Random Variables

• A random variable x takes a value x from 
the alphabet X with probability px(x). The 
vector of probabilities is px .

Examples:

X = [1;2;3;4;5;6], px = [1/6; 
1/6; 

1/6; 
1/6; 

1/6; 
1/6]

“english text”
X = [a; b;…, y; z; <space>]
px = [0.058; 0.013; …; 0.016; 0.0007; 0.193]

Note: we normally drop the subscript from px if unambiguous
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Expected Values

• If g(x) is a function defined on X then
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Shannon Information Content

• The Shannon Information Content of an outcome 
with probability p is –log2p

• Shannon’s contribution – a statistical view
– Messages, noisy channels are random

– Pre-Shannon era: deterministic approach (Fourier…)

• Example 1: Coin tossing
– X = [Head; Tail], p = [½; ½], SIC = [1; 1] bits

• Example 2: Is it my birthday ?
– X = [No; Yes], p = [364/365; 

1/365],
SIC = [0.004; 8.512] bits
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Minesweeper

• Where is the bomb ?

• 16 possibilities – needs 4 bits to specify
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Guess Prob SIC

Total 4.000 bits

1. No 15/16 0.093 bits

2. No 14/15 0.100 bits

3. No 13/14 0.107 bits

� 4. Yes 1/13 3.700 bits

SIC = – log2 p



Minesweeper

• Where is the bomb ?

• 16 possibilities – needs 4 bits to specify

15

Guess Prob SIC

1. No 15/16 0.093 bits



Entropy

– H(x) = the average Shannon Information Content of x

– H(x) = the average information gained by knowing its value

– the average number of “yes-no” questions needed to find x is in 
the range [H(x),H(x)+1)

– H(x) = the amount of uncertainty before we know its value
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Entropy Examples

(1) Bernoulli Random Variable

X = [0;1], px = [1–p; p]

Very common – we write H(p) to
mean H([1–p; p]).

(2) Four Coloured Shapes

X = [�; �; �; �], px = [½; ¼; 1/8; 
1/8]
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Comments on Entropy

• Entropy plays a central role in information 
theory

• Origin in thermodynamics

– S = k lnΩ, k: Boltzman’s constant, Ω: number of 

microstates

– The second law: entropy of an isolated system is non-
decreasing

• Shannon entropy

– Agrees with intuition: additive, monotonic, continuous

– Logarithmic measure could be derived from an 
axiomatic approach (Shannon 1948)
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Lecture 2

• Joint and Conditional Entropy

– Chain rule

• Mutual Information

– If x and y are correlated, their mutual information is 
the average information that y gives about x

• E.g. Communication Channel: x transmitted but y received

• It is the amount of information transmitted through the 
channel

• Jensen’s Inequality

19



Joint and Conditional Entropy

Joint Entropy: H(x,y)
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Conditional Entropy – View 1
21
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Conditional Entropy – View 2
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Chain Rules

• Probabilities

• Entropy

The log in the definition of entropy converts products of 
probability into sums of entropy
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Mutual Information
Mutual information is the average amount of 
information that you get about x from observing 
the value of y 

- Or the reduction in the uncertainty of x due to 

knowledge of y
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Mutual Information Example

• If you try to guess y you have a 50% 
chance of being correct.

• However, what if you know x ?

– Best guess:
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Conditional Mutual Information

Conditional Mutual Information

Note: Z conditioning applies to both X and Y
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Review/Preview

• Entropy:

– Positive and bounded
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Convex & Concave functions

f(x) is strictly convex over (a,b) if 

– every chord of f(x) lies above f(x)

– f(x) is concave ⇔ –f(x) is convex
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• Examples

– Strictly Convex: 

– Strictly Concave: 

– Convex and Concave: 

– Test:                                      ⇒ f(x) is strictly convex

“convex” (not strictly) uses “≤” in definition and “≥” in test



Jensen’s Inequality

Jensen’s Inequality: (a) f(x) convex ⇒ Ef(x) ≥ f(Ex)

(b) f(x) strictly convex ⇒ Ef(x) > f(Ex) unless x constant

Proof by induction on |X|

– |X|=1:
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Jensen’s Inequality Example

Mnemonic example:

f(x) = x2 : strictly convex

X = [–1; +1]

p = [½; ½]

E x = 0

f(E x)=0

E f(x) = 1 > f(E x)
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Summary
• Chain Rule:

• Conditional Entropy: 

– Conditioning reduces entropy

• Mutual Information
– In communications, mutual information is the 

amount of information transmitted through a noisy 
channel

• Jensen’s Inequality f(x) convex ⇒ Ef(x) ≥ f(Ex)
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Lecture 3

• Relative Entropy
– A measure of how different two probability mass 

vectors are

• Information Inequality and its consequences
– Relative Entropy is always positive

• Mutual information is positive

• Uniform bound

• Conditioning and correlation reduce entropy

• Stochastic Processes
– Entropy Rate

– Markov Processes
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Relative Entropy

Relative Entropy or Kullback-Leibler Divergence
between two probability mass vectors p and q
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Relative Entropy Example

X = [1 2 3 4 5 6]T
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Information Inequality

Information (Gibbs’) Inequality:

• Define  

• Proof
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Information Inequality Corollaries

• Uniform distribution has highest entropy

– Set q = [|X|–1, …, |X|–1]T giving H(q)=log|X| bits
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More Corollaries

• Conditioning reduces entropy
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Conditional Independence Bound

• Conditional Independence Bound

38

• Mutual Information Independence Bound

∑∑
==

− ≤=
n

i

ii

n

i

niinn HHH
11

:11:1:1:1 )|(),|()|( yxyxxyx

If all xi are independent or, by symmetry, if all yi are independent:

∑∑∑
===

=−≥

−=
n

i

ii

n

i

ii

n

i

i

nnnnn

IHH

HHI

111

:1:1:1:1:1

);()|()(

)|()();(

yxyxx

yxxyx

E.g.: If n=2 with xi i.i.d. Bernoulli (p=0.5) and y1=x2 and y2=x1, 
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Stochastic Process

Stochastic Process {xi} = x1, x2, …

Entropy:

Entropy Rate:

– Entropy rate estimates the additional entropy per new sample.

– Gives a lower bound on number of code bits per sample.

Examples:
– Typewriter with m equally likely letters each time: H(X)=logm

– xi i.i.d. random variables:
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Stationary Process

Stochastic Process {xi} is stationary iff
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Hence H(xn|x1:n-1) is positive, decreasing ⇒ tends to a limit, say b

(a) conditioning reduces entropy, (b) stationarity

Hence



Markov Process (Chain)

Discrete-valued stochastic process {xi} is

• Independent iff p(xn|x0:n–1)=p(xn)

• Markov iff p(xn|x0:n–1)=p(xn|xn–1)
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Independent Stochastic Process is easiest to deal with, Markov is next easiest

– time-invariant iff p(xn=b|xn–1=a) = pab indep of n

– States

– Transition matrix: T = {tab}

• Rows sum to 1: T1 = 1 where 1 is a vector of 1’s

• pn = TTpn–1

• Stationary distribution: p$ = TTp$



Stationary Markov Process

If a Markov process is

a) irreducible: you can go from any state a to any b in 

a finite number of steps

b) aperiodic: ∀ state a, the possible times to go from a
to a have highest common factor = 1

0 $ 0 $ 0( ) ,T n T= = ∀T p p 1 p p p
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then it has exactly one stationary distribution, p$.

– p$ is the eigenvector of TT with λ = 1:

– Initial distribution becomes irrelevant (asymptotically 
stationary)
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Chess Board

Random Walk

• Move �� �	
� equal 

prob

• p1 = [1 0 … 0]T

– H(p1) = 0
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Chess Board

Random Walk

• Move �� �	
� equal prob

• p1 = [1 0 … 0]T

– H(p1) = 0

• p$ = 1/40 × [3 5 3 5 8 5 3 5 3]T

– H(p$) = 3.0855

•

–
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H(p
1
)=0,    H(p

1
 | p

0
)=0

1

1 1 $, , ,

,

( ) lim ( | )

lim ( , ) log ( | ) log( )

n n
n

n n n n i i j i j
n

i j

H X H

p x x p x x p t t

−→∞

− −→∞

=

= − = −∑ ∑

x x

( ) 2.2365H X =



Chess Board Frames
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H(p
1
)=0,    H(p

1
 | p

0
)=0 H(p

2
)=1.58496,    H(p

2
 | p

1
)=1.58496 H(p

3
)=3.10287,    H(p

3
 | p

2
)=2.54795 H(p

4
)=2.99553,    H(p

4
 | p

3
)=2.09299

H(p
5
)=3.111,    H(p

5
 | p

4
)=2.30177 H(p

6
)=3.07129,    H(p

6
 | p

5
)=2.20683 H(p

7
)=3.09141,    H(p

7
 | p

6
)=2.24987 H(p

8
)=3.0827,    H(p

8
 | p

7
)=2.23038



Summary

• Entropy Rate of stochastic process:

indep are or   if ii

n

i
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1
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• Relative Entropy:
– D(p||q) = 0 iff p ≡ q

• Corollaries
– Uniform Bound: Uniform p maximizes H(p)

– I(x ; y) ≥ 0 ⇒ Conditioning reduces entropy

– Indep bounds:

1: 1( ) lim ( | )n n
n

H H −→∞
= x xX

1 $, , ,

,

( ) ( | ) log( )n n i i j i j

i j

H H p t t−= = −∑x xX

– {xi} stationary: 

– {xi} stationary Markov:



Lecture 4

• Source Coding Theorem
– n i.i.d. random variables each with entropy H(X) can 

be compressed into more than nH(X) bits as n tends 
to infinity

• Instantaneous Codes
– Symbol-by-symbol coding

– Uniquely decodable

• Kraft Inequality
– Constraint on the code length

• Optimal Symbol Code lengths
– Entropy Bound

47



Source Coding

• Source Code: C is a mapping X→D+

– X a random variable of the message

– D+ = set of all finite length strings from D

– D is often binary

– e.g. {E, F, G} →{0,1}+ : C(E)=0, C(F)=10, C(G)=11

48

• Extension: C+ is mapping X+ →D+ formed by 
concatenating C(xi) without punctuation

– e.g. C+(EFEEGE) =01000110



Desired Properties

• Non-singular: x1≠ x2 ⇒ C(x1) ≠ C(x2)

– Unambiguous description of a single letter of X

• Uniquely Decodable: C+ is non-singular
– The sequence C+(x+) is unambiguous

– A stronger condition

– Any encoded string has only one possible source 
string producing it

– However, one may have to examine the entire 
encoded string to determine even the first source 
symbol

– One could use punctuation between two codewords 
but inefficient
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Instantaneous Codes
• Instantaneous (or Prefix) Code

– No codeword is a prefix of another

– Can be decoded instantaneously without reference to 
future codewords

• Instantaneous ⇒ Uniquely Decodable ⇒ Non-
singular

Examples:
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IU

IU

IU

IU

IU

– C(E,F,G,H) = (0, 1, 00, 11)

– C(E,F) = (0, 101)

– C(E,F) = (1, 101)

– C(E,F,G,H) = (00, 01, 10, 11)

– C(E,F,G,H) = (0, 01, 011, 111)



Code Tree

Instantaneous code: C(E,F,G,H) = (00, 11, 100, 101)
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1

0

0

0

1

1

E

F

G

H

0

1

– D branches at each node

– Each codeword is a leaf

– Each node along the path to 
a leaf is a prefix of the leaf

⇒ can’t be a leaf itself

– Some leaves may be unused

111011000000→ FHGEE

Form a D-ary tree where D = |D|



Kraft Inequality (instantaneous codes)

• Limit on codeword lengths of instantaneous codes

– Not all codewords can be too short

• Codeword lengths l1, l2, …, l|X| ⇒
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1

0

0

0

1

1

E

F

G

H

0

1

½

½

¼

¼

¼

¼

1/
8

1/
8

1

• Label each node at depth l
with 2–l

• Each node equals the sum of 
all its leaves

12
||

1

≤∑
=

−
X

i

li

• Equality iff all leaves are utilised

• Total code budget = 1
Code 00 uses up ¼ of the budget
Code 100 uses up 1/8 of the budget

Same argument works with D-ary tree



McMillan Inequality (uniquely decodable codes)

If uniquely decodable C has codeword lengths

l1, l2, …, l|X| , then

Proof: Let
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l

== ∑
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1re-order sum by total length

max number of distinct sequences of length l

Implication: uniquely decodable codes doesn’t offer further 
reduction of codeword lengths than instantaneous codes

The same



McMillan Inequality (uniquely decodable codes)

If uniquely decodable C has codeword lengths

l1, l2, …, l|X| , then

Proof: Let
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Implication: uniquely decodable codes doesn’t offer further 
reduction of codeword lengths than instantaneous codes

The same



How Short are Optimal Codes?

If l(x) = length(C(x)) then C is optimal if
L=E l(x) is as small as possible.

We want to minimize                  subject to

1.

2. all the l(x) are integers

Simplified version:

Ignore condition 2 and assume condition 1 is satisfied with equality.
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∑
∈Xx
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1)( ≤∑
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−

Xx

xlD

less restrictive so lengths may be shorter than actually possible ⇒ lower bound



Optimal Codes (non-integer li)

• Minimize                subject to
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no uniquely decodable code can do better than this

li = –logD(p(xi))⇒=⇒=∑
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DD
i

li λ
X

     also

Use Lagrange multiplier:



Bounds on Optimal Code Length
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• We can do better by encoding blocks of n symbols

• If entropy rate of xi exists (⇐ xi is stationary process)

Round up optimal code lengths:

• li are bound to satisfy the Kraft Inequality (since the

optimum lengths do)

 )(log iDi xpl −=

*( ) ( ) 1D DH L H≤ < +x x
(since we added <1

to optimum values)

• For this choice,        –logD(p(xi)) ≤ li ≤ –logD(p(xi)) + 1

• Average shortest length: 

1 1 1 1

1: 1: 1:( ) ( ) ( )D n n D nn H n E l n H n− − − −≤ ≤ +x x x

1 1

1: 1:( ) ( ) ( ) ( )D n D n Dn H H n E l H− −→ ⇒ →x xX X

Also known as source coding theorem



Block Coding Example

• n=1

58

sym A B
prob 0.9 0.1

code 0 1
11 =− lEn

• n=2 sym AA AB BA BB
prob 0.81 0.09 0.09 0.01

code 0 11 100 101
645.01 =− lEn

• n=3 sym AAA AAB … BBA BBB
prob 0.729 0.081 … 0.009 0.001

code 0 101 … 10010 10011
583.01 =− lEn

2 4 6 8 10 12
0.4

0.6

0.8

1

n
-1

E
 l

n

469.0)( =ixH

X = [A;B], px = [0.9; 0.1]

Huffman coding:

The extra 1 bit inefficiency becomes insignificant for large blocks



Summary
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• McMillan Inequality for D-ary codes:

• any uniquely decodable C has

• Any uniquely decodable code:

• Source coding theorem

• Symbol-by-symbol encoding

• Block encoding

( ) ( )DE l H≥x x

1
||

1

≤∑
=

−
X

i

liD

1)()()( +≤≤ xxx DD HlEH

1

1:( ) ( )n Dn E l H− →x X



Lecture 5

• Source Coding Algorithms

• Huffman Coding

• Lempel-Ziv Coding
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Huffman Code

An optimal binary instantaneous code must satisfy:
1. (else swap codewords)

61

jiji llxpxp ≤⇒> )()(

2. The two longest codewords have the same length
(else chop a bit off the longer codeword)

3. ∃ two longest codewords differing only in the last bit
(else chop a bit off all of them)

Huffman Code construction
1. Take the two smallest p(xi) and assign each a 

different last bit. Then merge into a single symbol.

2. Repeat step 1 until only one symbol remains

Used in JPEG, MP3…



Huffman Code Example

X = [a, b, c, d, e], px = [0.25  0.25  0.2  0.15  0.15]

62

Read diagram backwards for codewords:

C(X) = [01  10  11  000  001], L = 2.3, H(x) = 2.286

For D-ary code, first add extra zero-probability symbols until 
|X|–1 is a multiple of D–1 and then group D symbols at a time



Huffman Code is Optimal Instantaneous Code

p2=[0.55 0.45],

c2=[0 1], L2=1
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0.25

0.25

0.2

0.15

0.15

0.25

0.25

0.2

0.3

0.25

0.45

0.3

0.55

0.45

1.0a

b

c

d

e

0

1

0

0 0

1

1

1

Huffman traceback gives codes for progressively larger 
alphabets:

We want to show that all these codes are optimal including C5

p3=[0.45 0.3 0.25],

c3=[1 00 01], L3=1.55

p4=[0.3 0.25 0.25 0.2],

c4=[00 01 10 11], L4=2

p5=[0.25 0.25 0.2 0.15 0.15],

c5=[01 10 11 000 001], L5=2.3



Huffman Code is Optimal Instantaneous Code

p2=[0.55 0.45],

c2=[0 1], L2=1

64

Huffman traceback gives codes for progressively larger 
alphabets:

We want to show that all these codes are optimal including C5

p3=[0.45 0.3 0.25],

c3=[1 00 01], L3=1.55

p4=[0.3 0.25 0.25 0.2],

c4=[00 01 10 11], L4=2

p5=[0.25 0.25 0.2 0.15 0.15],

c5=[01 10 11 000 001], L5=2.3



Huffman Optimality Proof

Suppose one of these codes is sub-optimal:
– ∃ m>2 with cm the first sub-optimal code (note     is definitely 

optimal)

65

Note: Huffman is just one out of many possible optimal codes

2c

mc′

mc′

1−′
mc

– An optimal must have LC'm < LCm

– Rearrange the symbols with longest codes in      so the two 
lowest probs pi and pj differ only in the last digit (doesen’t 

change optimality)

– Merge xi and xj to create a new code as in Huffman 

procedure

– L C'm–1 =L C'm– pi– pj since identical except 1 bit shorter with prob 
pi+ pj

– But also L Cm–1 =L Cm– pi– pj hence L C'm–1 < LCm–1 which 
contradicts assumption that cm is the first sub-optimal code

( ) ( ) 1D DH L H≤ < +x xHence, Huffman coding satisfies



Shannon-Fano Code

Fano code

1. Put probabilities in decreasing order

2. Split as close to 50-50 as possible; repeat with each half
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0.20

0.19

0.17

0.15

0.14

a

b

c

d

e

0

1
0.06

0.05

0.04

f

g

h

0

1
0

1

0

1

0

1

0

1
0

1

00

010

011

100

101

110

1110

1111

H(x) = 2.81 bits

LSF = 2.89 bits

Not necessarily optimal: the 
best code for this p actually 
has L = 2.85 bits



Shannon versus Huffman

Shannon
1

1 21
( ), ( ) ( ) ( )

[0,1] log ( )

( ) ( ) 1 (excercise)

i

i k mk

i i

D SF D

F p p p p

F p

H L H

−

=
= ≥ ≥ ≥

∈ −  
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x

x x

encoding : round the number to bits
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 
bits 15.2

]5222[log

]32.4256.147.1[log

bits 78.1)(]05.025.034.036.0[

2

2

=

=−=

=−

=⇒=

S

S

L

H

x

x

x x

pl

p

p

Huffman

bits 94.1

]3321[

=

=

H

H

L

l

Individual codewords may be longer in 
Huffman than Shannon but not the average



Issues with Huffman Coding

• Requires the probability distribution of the 
source

– Must recompute entire code if any symbol probability 
changes

• A block of N symbols needs |X|N pre-calculated probabilities

• For many practical applications, however, the 
underlying probability distribution is unknown

– Estimate the distribution

• Arithmetic coding: extension of Shannon-Fano coding; can 
deal with large block lengths

– Without the distribution

• Universal coding: Lempel-Ziv coding
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Universal Coding
• Does not depend on the distribution of the 

source

• Compression of an individual sequence

• Run length coding
– Runs of data are stored (e.g., in fax machines)

• Lempel-Ziv coding
– Generalization that takes advantage of runs of strings 

of characters (such as WWWWWWWWWBB)

– Adaptive dictionary compression algorithms

– Asymptotically optimum: achieves the entropy rate 
for any stationary ergodic source
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Example: WWWWWWWWWBBWWWWWWWBBBBBBWW

9W2B7W6B2W



Lempel-Ziv Coding (LZ78)

Memorize previously occurring substrings in the input data

– parse input into the shortest possible distinct ‘phrases’, i.e., each 
phrase is the shortest phrase not seen earlier

– number the phrases starting from 1 (0 is the empty string)

ABAABABABBBAB…

12_3_4__5_6_7

– each phrase consists of a previously occurring phrase
(head) followed by an additional A or B (tail)

– encoding: give location of head followed by the additional 
symbol for tail

0A0B1A2A4B2B1B…

– decoder uses an identical dictionary

70

locations are underlined

Look up a dictionary



Lempel-Ziv Example

Remark:

• No need to send the 
dictionary (imagine zip 
and unzip!)

• Can be reconstructed

• Need to send 0’s in 01, 
010 and 001 to avoid 
ambiguity (i.e., 
instantaneous code)
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Input = 1011010100010010001001010010

Dictionary Send Decode

0000 φ 1 1
0001 1 00 0
0010 0 011 11
0011 11 101 01
0100 01 1000 010
0101 010 0100 00
0110 00 0010 10
0111 10 1010 0100
1000 0100 10001 01001
1001 01001

Input = 1011010100010010001001010010

Dictionary Send Decode

00 φ 1 1
01 1 00 0
10 0

Input = 1011010100010010001001010010

Dictionary Send Decode

00 φ 1 1
01 1 00 0
10 0 011 11

Input = 1011010100010010001001010010

Dictionary Send Decode

00 φ 1 1
01 1 00 0
10 0 011 11
11 11

Input = 1011010100010010001001010010

Dictionary Send Decode

00 φ 1 1
01 1 00 0
10 0 011 11
11 11 101 01

Input = 1011010100010010001001010010

Dictionary Send Decode

φ 1 1

Input = 1011010100010010001001010010

Dictionary Send Decode

0 φ 1 1
1 1 00 0

Input = 1011010100010010001001010010

Dictionary Send Decode

000 φ 1 1
001 1 00 0
010 0 011 11
011 11 101 01
100 01

Input = 1011010100010010001001010010

Dictionary Send Decode

000 φ 1 1
001 1 00 0
010 0 011 11
011 11 101 01
100 01

Input = 1011010100010010001001010010

Dictionary Send Decode

000 φ 1 1
001 1 00 0
010 0 011 11
011 11 101 01
100 01 1000 010

Input = 1011010100010010001001010010

Dictionary Send Decode

000 φ 1 1
001 1 00 0
010 0 011 11
011 11 101 01
100 01 1000 010
101 010

Input = 1011010100010010001001010010

Dictionary Send Decode

000 φ 1 1
001 1 00 0
010 0 011 11
011 11 101 01
100 01 1000 010
101 010 0100 00

Input = 1011010100010010001001010010

Dictionary Send Decode

000 φ 1 1
001 1 00 0
010 0 011 11
011 11 101 01
100 01 1000 010
101 010 0100 00
110 00

Input = 1011010100010010001001010010

Dictionary Send Decode

000 φ 1 1
001 1 00 0
010 0 011 11
011 11 101 01
100 01 1000 010
101 010 0100 00
110 00 0010 10

Input = 1011010100010010001001010010

Dictionary Send Decode

000 φ 1 1
001 1 00 0
010 0 011 11
011 11 101 01
100 01 1000 010
101 010 0100 00
110 00 0010 10
111 10

Input = 1011010100010010001001010010

Dictionary Send Decode

000 φ 1 1
001 1 00 0
010 0 011 11
011 11 101 01
100 01 1000 010
101 010 0100 00
110 00 0010 10
111 10

Input = 1011010100010010001001010010

Dictionary Send Decode

000 φ 1 1
001 1 00 0
010 0 011 11
011 11 101 01
100 01 1000 010
101 010 0100 00
110 00 0010 10
111 10

Input = 1011010100010010001001010010

Dictionary Send Decode

000 φ 1 1
001 1 00 0
010 0 011 11
011 11 101 01
100 01 1000 010
101 010 0100 00
110 00 0010 10
111 10 1010 0100

Input = 1011010100010010001001010010

Dictionary Send Decode

0000 φ 1 1
0001 1 00 0
0010 0 011 11
0011 11 101 01
0100 01 1000 010
0101 010 0100 00
0110 00 0010 10
0111 10 1010 0100
1000 0100

Input = 1011010100010010001001010010

Dictionary Send Decode

0000 φ 1 1
0001 1 00 0
0010 0 011 11
0011 11 101 01
0100 01 1000 010
0101 010 0100 00
0110 00 0010 10
0111 10 1010 0100
1000 0100

Input = 1011010100010010001001010010

Dictionary Send Decode

0000 φ 1 1
0001 1 00 0
0010 0 011 11
0011 11 101 01
0100 01 1000 010
0101 010 0100 00
0110 00 0010 10
0111 10 1010 0100
1000 0100

Input = 1011010100010010001001010010

Dictionary Send Decode

0000 φ 1 1
0001 1 00 0
0010 0 011 11
0011 11 101 01
0100 01 1000 010
0101 010 0100 00
0110 00 0010 10
0111 10 1010 0100
1000 0100

Input = 1011010100010010001001010010

Dictionary Send Decode

0000 φ 1 1
0001 1 00 0
0010 0 011 11
0011 11 101 01
0100 01 1000 010
0101 010 0100 00
0110 00 0010 10
0111 10 1010 0100
1000 0100 10001 01001

Input = 1011010100010010001001010010

Dictionary Send Decode

0000 φ 1 1
0001 1 00 0
0010 0 011 11
0011 11 101 01
0100 01 1000 010
0101 010 0100 00
0110 00 0010 10
0111 10 1010 0100
1000 0100 10001 01001
1001 01001

Input = 1011010100010010001001010010

Dictionary Send Decode

0000 φ 1 1
0001 1 00 0
0010 0 011 11
0011 11 101 01
0100 01 1000 010
0101 010 0100 00
0110 00 0010 10
0111 10 1010 0100
1000 0100 10001 01001
1001 01001

Input = 1011010100010010001001010010

Dictionary Send Decode

0000 φ 1 1
0001 1 00 0
0010 0 011 11
0011 11 101 01
0100 01 1000 010
0101 010 0100 00
0110 00 0010 10
0111 10 1010 0100
1000 0100 10001 01001
1001 01001

Input = 1011010100010010001001010010

Dictionary Send Decode

0000 φ 1 1
0001 1 00 0
0010 0 011 11
0011 11 101 01
0100 01 1000 010
0101 010 0100 00
0110 00 0010 10
0111 10 1010 0100
1000 0100 10001 01001
1001 01001

Input = 1011010100010010001001010010

Dictionary Send Decode

0000 φ 1 1
0001 1 00 0
0010 0 011 11
0011 11 101 01
0100 01 1000 010
0101 010 0100 00
0110 00 0010 10
0111 10 1010 0100
1000 0100 10001 01001
1001 01001 10010 010010

location No need to always 
send 4 bits



Lempel-Ziv Comments

Dictionary D contains K entries D(0), …, D(K–1). We need to send M=ceil(log K) bits to 
specify a dictionary entry. Initially K=1, D(0)= φ = null string and M=ceil(log K) = 0 bits.

72

Input Action
1 “1” ∉D so send “1” and set D(1)=“1”. Now K=2 ⇒ M=1.
0 “0” ∉D so split it up as “φ”+”0” and send location “0” (since D(0)= φ) followed 

by “0”. Then set D(2)=“0” making K=3 ⇒ M=2.
1 “1” ∈ D so don’t send anything yet – just read the next input bit.
1 “11” ∉D so split it up as “1” + “1” and send location “01” (since D(1)= “1” and 

M=2) followed by “1”. Then set D(3)=“11” making K=4 ⇒ M=2.
0 “0” ∈ D so don’t send anything yet – just read the next input bit.
1 “01” ∉D so split it up as “0” + “1” and send location “10” (since D(2)= “0” and 

M=2) followed by “1”. Then set D(4)=“01” making K=5 ⇒ M=3.
0 “0” ∈ D so don’t send anything yet – just read the next input bit.
1 “01” ∈ D so don’t send anything yet – just read the next input bit.
0 “010” ∉D so split it up as “01” + “0” and send location “100” (since D(4)= “01” 

and M=3) followed by “0”. Then set D(5)=“010” making K=6 ⇒ M=3.

So far we have sent 1000111011000 where dictionary entry numbers are in red.



Lempel-Ziv Properties

• Simple to implement
• Widely used because of its speed and efficiency

– applications: compress, gzip, GIF, TIFF, modem …
– variations: LZW (considering last character of the 

current phrase as part of the next phrase, used in 
Adobe Acrobat), LZ77 (sliding window)

– different dictionary handling, etc

• Excellent compression in practice
– many files contain repetitive sequences
– worse than arithmetic coding for text files
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Asymptotic Optimality

• Asymptotically optimum for stationary ergodic 
source (i.e. achieves entropy rate)

• Let c(n) denote the number of phrases for a 
sequence of length n

• Compressed sequence consists of c(n) pairs 
(location, last bit)

• Needs c(n)[logc(n)+1] bits in total
• {Xi} stationary ergodic ⇒

– Proof: C&T chapter 12.10
– may only approach this for an enormous file

74

1

1:

( )[log ( ) 1]
limsup ( ) limsup ( ) 1n

n n

c n c n
n l X H

n

−

→∞ →∞

+
= ≤ X  with probability 



Summary
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• Shannon-Fano Coding:

– Intuitively natural top-down design

• Lempel-Ziv Coding

– Does not require probability distribution

– Asymptotically optimum for stationary ergodic source (i.e. 
achieves entropy rate)

• Huffman Coding:

– Bottom-up design

– Optimal ⇒ shortest average length
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Lecture 6

• Markov Chains
– Have a special meaning

– Not to be confused with the standard 
definition of Markov chains (which are 
sequences of discrete random variables)

• Data Processing Theorem
– You can’t create information from nothing

• Fano’s Inequality
– Lower bound for error in estimating X from Y
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Markov Chains

If we have three random variables: x, y, z
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)()|(),|(),,( xpxypyxzpzyxp =
they form a Markov chain x→y→z if

)()|()|(),,()|(),|( xpxypyzpzyxpyzpyxzp =⇔=

A Markov chain x→y→z means that

– the only way that x affects z is through the value of y

),|()|(0)|;( yxzyzyzx HHI =⇔=
– if you already know y, then observing x gives you no additional 

information about z, i.e.

– if you know y, then observing z gives you no additional 
information about x.



Data Processing

• Estimate z = f(y), where f is a function

• A special case of a Markov chain x � y � f(y)

• Does processing of y increase the information that y
contains about x?
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Markov Chain Symmetry

If x→y→z 
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Data Processing Theorem

If  x→y→z then I(x ;y) ≥ I(x ; z)
– processing y cannot add new information about x
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If x→y→z then I(x ;y) ≥ I(x ; y | z)
– Knowing z does not increase the amount y tells you about x

Proof:
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So Why Processing?

• One can not create information by manipulating 
the data

• But no information is lost if equality holds

• Sufficient statistic

– z contains all the information in y about x

– Preserves mutual information I(x ;y) = I(x ; z)

• The estimator should be designed in a way such 
that it outputs sufficient statistics

• Can the estimation be arbitrarily accurate?
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Fano’s Inequality

If we estimate x from y, what is ?
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Implications

• Zero probability of error

• Low probability of error if H(x|y) is small

• If H(x|y) is large then the probability of error is 

high

• Could be slightly strengthened to

• Fano’s inequality is used whenever you need to 
show that errors are inevitable

– E.g., Converse to channel coding theorem
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Fano Example

X = {1:5}, px = [0.35, 0.35, 0.1, 0.1, 0.1]T

Y = {1:2} if x ≤2 then y =x with probability 6/7 
while if x >2 then y =1 or 2 with equal prob.

Our best strategy is to guess 

– px |y=1 = [0.6, 0.1, 0.1, 0.1, 0.1]T

– actual error prob: 

Fano bound:                                        (exercise)
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Summary
• Markov:

• Data Processing Theorem: if  x→y→z then

– I(x ; y) ≥ I(x ; z), I(y ; z) ≥ I(x ; z)

– I(x ; y) ≥ I(x ; y | z)

– Long Markov chains: If x1→ x2 → x3 → x4 → x5 → x6, 

then Mutual Information increases as you get closer 
together:

• e.g. I(x3, x4) ≥ I(x2, x4) ≥ I(x1, x5) ≥ I(x1, x6)

• Fano’s Inequality: if 
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Lecture 7

• Law of Large Numbers
– Sample mean is close to expected value

• Asymptotic Equipartition Principle (AEP)
– -logP(x1,x2,…,xn)/n is close to entropy H

• The Typical Set
– Probability of each sequence close to 2-nH

– Size (~2nH) and total probability (~1)

• The Atypical Set
– Unimportant and could be ignored
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Typicality: Example

X = {a, b, c, d}, p = [0.5 0.25 0.125 0.125]

–log p = [1 2 3 3]  ⇒ H(p) = 1.75 bits

Sample eight i.i.d. values

• typical ⇒ correct proportions

adbabaac  –log p(x) = 14 = 8×1.75 = nH(x)
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• not typical ⇒ log p(x) ≠ nH(x)

dddddddd  –log p(x) = 24



Convergence of Random Variables

• Convergence
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Law of Large Numbers

Given i.i.d. {xi}, sample mean

–

As n increases, Var sn gets smaller and the values 

become clustered around the mean
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Asymptotic Equipartition Principle

• x is the i.i.d. sequence {xi} for 1 ≤ i ≤ n

– Prob of a particular sequence is

– Average

• AEP:

• Proof:

90

prob1
log ( ) ( )p H

n
− → xx

∏
=

=
n

i

ipp

1

)()( xx

)()(log)(log xnHxpEnpE i =−=− x

1

prob

1 1
log ( ) log ( )

log ( ) ( )

n

i

i

i

p p x
n n

E p x H

=

− = −

→ − =

∑

x

x

law of large numbers



Typical Set

Typical set (for finite n)

Example:

– xi Bernoulli with p(xi =1)=p

– e.g. p([0 1 1 0 0 0])=p2(1–p)4

– For p=0.2, H(X)=0.72 bits

– Red bar shows T0.1
(n)
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Typical Set Frames
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1111, 1101, 1010, 0100, 000000110011, 00110010, 00010001, 00010000, 000000000010001100010010, 0001001010010000, 0001000100010000, 
0000100001000000, 0000000010000000
1, 011, 10, 00
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Typical Set: Properties

1. Individual prob: 

2. Total prob: 

3. Size: 
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Consequence

• for any ε and for n > Nε
“Almost all events are almost equally surprising”

•
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Source Coding & Data Compression

For any choice of ε > 0, we can, by choosing block 
size, n, large enough, do the following:

• make a lossless code using only H(x)+ε bits per symbol 
on average:

• The coding is one-to-one and decodable

– However impractical due to exponential complexity

• Typical sequences have short descriptions of length ≈ nH

– Another proof of source coding theorem (Shannon’s original 
proof)

• However, encoding/decoding complexity is exponential 
in n

95

L
H

n
ε≤ +



Smallest high-probability Set

Tε
(n) is a small subset of Xn containing most of the 

probability mass. Can you get even smaller ?
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Summary

• Typical Set

– Individual Prob

– Total Prob

– Size

• No other high probability set can be much 
smaller than 

• Asymptotic Equipartition Principle

– Almost all event sequences are equally surprising

• Can be used to prove source coding theorem
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Lecture 8

• Channel Coding

• Channel Capacity
– The highest rate in bits per channel use that can be 

transmitted reliably

– The maximum mutual information

• Discrete Memoryless Channels
– Symmetric Channels

– Channel capacity
• Binary Symmetric Channel

• Binary Erasure Channel

• Asymmetric Channel
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Model of Digital Communication

• Source Coding

– Compresses the data to remove redundancy

• Channel Coding

– Adds redundancy/structure to protect against 
channel errors
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Discrete Memoryless Channel

• Input: x∈X, Output y∈Y

• Time-Invariant Transition-Probability Matrix

– Hence

– Q: each row sum = 1, average column sum = |X||Y|–1

• Memoryless: p(yn|x1:n, y1:n–1) = p(yn|xn)

• DMC = Discrete Memoryless Channel
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Binary Channels

• Binary Symmetric Channel

– X = [0 1], Y = [0 1]

• Binary Erasure Channel

– X = [0 1], Y = [0 ? 1]

• Z Channel

– X = [0 1], Y = [0 1]

Symmetric: rows are permutations of each other; columns are permutations of each other

Weakly Symmetric: rows are permutations of each other; columns have the same sum
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Weakly Symmetric Channels

Weakly Symmetric:

1. All columns of Q have the same sum = |X||Y|–1

– If x is uniform (i.e. p(x) = |X|–1) then y is uniform

102

1 1 1 1
( ) ( | ) ( ) ( | )

x X x X

p y p y x p x p y x
− − − −

∈ ∈

= = = × =∑ ∑X X X Y Y

)()()()|()()|( :,1:,1 QQ HxpHxHxpH
xx

==== ∑∑
∈∈ XX

xyxy

where Q1,: is the entropy of the first (or any other) row of the Q matrix

Symmetric: 1. All rows are permutations of each other
2. All columns are permutations of each other
Symmetric ⇒ weakly symmetric

2. All rows are permutations of each other

– Each row of Q has the same entropy so



Channel Capacity

• Capacity of a DMC channel:

– Mutual information (not entropy itself) is what could be 
transmitted through the channel

– Maximum is over all possible input distributions px

– ∃ only one maximum since I(x ;y) is concave in px for fixed py|x

– We want to find the px that maximizes I(x ;y)

H(x |y) H(y |x)

H(x ,y)

H(x) H(y)

I(x ;y)
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Mutual Information Plot

Binary Symmetric Channel

Bernoulli Input
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Mutual Information Concave in pX

Mutual Information I(x;y) is concave in px for fixed py|x
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– Define z: bernoulli random variable with p(1) = λ
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Mutual Information Convex in pY|X

Mutual Information I(x ;y) is convex in py|x for fixed px
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n-use Channel Capacity

We can maximize I(x;y) by maximizing each I(xi;yi)

independently and taking xi to be i.i.d.
– We will concentrate on maximizing I(x; y) for a single channel use

– The elements of Xi are not necessarily i.i.d.
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Capacity of Symmetric Channel

∴ Information Capacity of a BSC is 1–H(f)
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If channel is weakly symmetric:

For a binary symmetric channel (BSC):
– |Y| = 2

– H(Q1,:) = H(f)

– I(x;y) ≤ 1 – H(f)

∴ Information Capacity of a WS channel is C = log|Y|–H(Q1,:)



Binary Erasure Channel (BEC)

since a fraction f of the bits are lost, the capacity is only 1–f

and this is achieved when x is uniform
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Asymmetric Channel Capacity

Let px = [a  a  1–2a]T ⇒ py=QTpx = px
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To find C, maximize I(x ;y) = H(y) – H(y |x) 
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Summary

• Given the channel, mutual information is 
concave in input distribution

• Channel capacity 
– The maximum exists and is unique

• DMC capacity
– Weakly symmetric channel: log|Y|–H(Q1,:)

– BSC: 1–H(f)

– BEC: 1–f

– In general it very hard to obtain closed-form; 
numerical method using convex optimization instead
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Lecture 9

• Jointly Typical Sets

• Joint AEP

• Channel Coding Theorem
– Ultimate limit on information transmission is 

channel capacity

– The central and most successful story of 
information theory

– Random Coding

– Jointly typical decoding
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Intuition on the Ultimate Limit

– For large n, an average input sequence x1:n corresponds to about 
2nH(y|x) typical output sequences

– There are a total of 2nH(y) typical output sequences

– For nearly error free transmission, we select a number of input 
sequences whose corresponding sets of output sequences hardly 
overlap

– The maximum number of distinct sets of output sequences is

2n(H(y)–H(y|x)) = 2nI(y ;x)

– One can send I(y;x) bits per channel use
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Noisy

Channel

x
1:n

y
1:n

2nH(x) 2nH(y|x)

2nH(y)
• Consider blocks of n symbols:

for large n can transmit at any rate < C with negligible errors 



Jointly Typical Set

x,y is the i.i.d. sequence {xi,yi} for 1 ≤ i ≤ n

– Prob of a particular sequence is

–

– Jointly Typical set:

114

1

( , ) ( , )
N

i i

i

p p x y
=

= ∏x y

),(),(log),(log yxnHyxpEnpE ii =−=− yx

{

}

( ) 1

1

1

, : log ( ) ( ) ,

log ( ) ( ) ,

log ( , ) ( , )

n nJ n p H

n p H

n p H

ε ε

ε

ε

−

−

−

= ∈ − − <

− − <

− − <

x

y

x y

XYx y x

y

x y



Jointly Typical Example

Binary Symmetric Channel
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Jointly typical example (for any ε):
x = 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y = 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

all combinations of x and y have exactly the right frequencies



Jointly Typical Diagram

Dots represent 
jointly typical 
pairs (x,y)

Inner rectangle 
represents pairs 
that are typical 
in x or y but not 
necessarily 
jointly typical
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2nlog|X| 2nH(x)

2nlog|Y|

2nH(y)

2nH(y|x)

2nH(x|y)

Typical in x or y: 2n(H(x)+H(y))

All sequences: 2nlog(|X||Y|)

Jointly
 ty

pical: 2
nH(x,y)

• There are about 2nH(x) typical x’s in all

• Each typical y is jointly typical with about 2nH(x|y) of these typical x’s

• The jointly typical pairs are a fraction 2–nI(x ;y) of the inner rectangle 

• Channel Code: choose x’s whose J.T. y’s don’t overlap; use J.T. for decoding

• There are 2nI(x ;y) such codewords x’s

Each point defines both an x sequence and a y sequence



Joint Typical Set Properties

1. Indiv Prob:

2. Total Prob: 

3. Size:
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Properties

4.  If px'=px and py' =py with x' and y' independent:
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Channel Coding

• Assume Discrete Memoryless Channel with known Qy|x

• An (M, n) code is
– A fixed set of M codewords x(w)∈Xn for w=1:M

– A deterministic decoder g(y)∈1:M

• The rate of an (M,n) code: R=(log M)/n bits/transmission

119

Noisy

Channel

x1:n y1:n
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Shannon’s ideas
• Channel coding theorem: the basic theorem of 

information theory
– Proved in his original 1948 paper

• How do you correct all errors?

• Shannon’s ideas
– Allowing arbitrarily small but nonzero error probability

– Using the channel many times in succession so that 
AEP holds

– Consider a randomly chosen code and show the 
expected average error probability is small

• Use the idea of typical sequences

• Show this means ∃ at least one code with small max error 
prob

• Sadly it doesn’t tell you how to construct the code
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Channel Coding Theorem

• A rate R is achievable if R<C and not achievable if R>C

– If R<C, ∃ a sequence of (2nR,n) codes with max prob of error 
λ(n)→0 as n→∞

– Any sequence of (2nR,n) codes with max prob of error λ(n)→0 as 
n→∞ must have R ≤ C
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A very counterintuitive result:

Despite channel errors you can 
get arbitrarily low bit error 
rates provided that R<C



Summary

• Jointly typical set

• Machinery to prove channel coding 
theorem
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Lecture 10

• Channel Coding Theorem

– Proof

• Using joint typicality

• Arguably the simplest one among many possible 
ways

• Limitation: does not reveal Pe ~ e-nE(R)

– Converse (next lecture)
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Channel Coding Principle

– An average input sequence x1:n corresponds to about 
2nH(y|x) typical output sequences
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Noisy

Channel

x
1:n

y
1:n

2nH(x) 2nH(y|x)

2nH(y)

• Consider blocks of n symbols:

Channel Coding Theorem: for large n, can transmit at any rate R < C with negligible errors 

– Random Codes: Choose M = 2nR ( R≤I(x;y) ) random 
codewords x(w)

• their typical output sequences are unlikely to overlap much.

– Joint Typical Decoding: A received vector y is very 
likely to be in the typical output set of the transmitted 
x(w) and no others. Decode as this w.



Random (2nR,n) Code

• Choose ε ≈ error prob, joint typicality ⇒ Nε , choose n>Nε
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• Choose px so that I(x ;y)=C, the information capacity

• Use px to choose a code C with random x(w)∈Xn, w=1:2nR

– the receiver knows this code and also the transition matrix Q

• Assume the message W∈1:2nR is uniformly distributed

• If received value is y; decode the message by seeing how many 
x(w)’s are jointly typical with y

– if x(k) is the only one then k is the decoded message

– if there are 0 or ≥2 possible k’s then declare an error message 0

– we calculate error probability averaged over all C and all W
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Decoding Errors
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Noisy

Channel

x
1:n

y
1:n

• Assume we transmit x(1) and receive y

• Define the J.T. events

• Decode using joint typicality 

• We have an error if either e1 false or ew true for w ≥ 2

• The x(w) for w ≠ 1 are independent of x(1) and hence also 

independent of y. So 
Joint AEP



Error Probability for Random Code

• Upper bound
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ones must all have λw ≤ 4ε. The resultant code has rate R–n–1 ≅ R.
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Code Selection & Expurgation

• Since average of P(E) over all codes is ≤ 2ε there must be at least 

one code for which this is true.
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Proof:

• Expurgation: Throw away the worst half of the codewords; the 

remaining ones must all have λw≤ 4ε.

Proof: Assume λw are in descending order



Summary of Procedure
129

{ }1),3/()(log,max −−−−= εεεε RCNn

see (a),(b),(c) below

(a)

(b)

(c)

Note: ε determines both error probability and closeness to capacity

• For any R<C – 3ε set

• Find the optimum pX so that I(x ; y) = C

• Choosing codewords randomly (using pX) to construct codes with 2nR

codewords and using joint typicality as the decoder

• Since average of P(E) over all codes is ≤ 2ε there must be at least 

one code for which this is true.

• Throw away the worst half of the codewords. Now the worst 
codeword has an error prob ≤ 4ε with rate = R – n–1 > R – ε

• The resultant code transmits at a rate as close to C as desired with 
an error probability that can be made as small as desired (but n

unnecessarily large).



Remarks

• Random coding is a powerful method of proof, 
not a method of signaling

• Picking randomly will give a good code

• But n has to be large (AEP)

• Without a structure, it is difficult to 
encode/decode
– Table lookup requires exponential size

• Channel coding theorem does not provide a 
practical coding scheme

• Folk theorem (but outdated now):
– Almost all codes are good, except those we can think 

of
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Lecture 11

• Converse of Channel Coding Theorem

– Cannot achieve R>C

• Capacity with feedback

– No gain for DMC but simpler encoding/ 
decoding

• Joint Source-Channel Coding

– No point for a DMC
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Converse of Coding Theorem
• Fano’s Inequality: if Pe

(n) is error prob when estimating w from y,
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Minimum Bit-Error Rate

Suppose
– w1:nR is i.i.d. bits with H(wi)=1

– The bit-error rate is
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Coding Theory and Practice

• Construction for good codes

– Ever since Shannon founded information theory

– Practical: Computation & memory ∝ nk for some k

• Repetition code: rate � 0

• Block codes: encode a block at a time
– Hamming code: correct one error

– Reed-Solomon code, BCH code: multiple errors (1950s)

• Convolutional code: convolve bit stream with a filter

• Concatenated code: RS + convolutional

• Capacity-approaching codes:
– Turbo code: combination of two interleaved convolutional codes 

(1993)

– Low-density parity-check (LDPC) code (1960)

– Dream has come true for some channels today
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Channel with Feedback

• Assume error-free feedback: does it increase capacity ?

• A (2nR, n) feedback code is

– A sequence of mappings xi = xi(w,y1:i–1) for i=1:n

– A decoding function
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• A rate R is achievable if ∃ a sequence of (2nR,n) feedback 

codes such that

• Feedback capacity, CFB ≥ C, is the sup of achievable rates



Feedback Doesn’t Increase Capacity
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 Any rate > C is unachievable

The DMC does not benefit from feedback: CFB = C
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Example: BEC with feedback

• Capacity is 1 – f

• Encode algorithm

– If yi = ?, tell the sender to retransmit bit i

– Average number of transmissions per bit: 
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• Average number of successfully recovered bits per 
transmission = 1 – f

– Capacity is achieved!

• Capacity unchanged but encoding/decoding algorithm 
much simpler.



Joint Source-Channel Coding

• Assume wi satisfies AEP and |W|<∞
– Examples: i.i.d.; Markov; stationary ergodic

• Capacity of DMC channel is C

– if time-varying: 

138

Noisy

Channel

x
1:n

y
1:n

Encoder
w

1:n
Decoder

^
w

1:n

( )

1: 1:
ˆ( ) 0n

e n n n
P P →∞= ≠ →w w

);(lim 1 yxInC
n

−

∞→
=

♦ = proved on next page

♦• Joint Source-Channel Coding Theorem:
∃ codes with iff H(W) < C

– errors arise from two reasons

• Incorrect encoding of w

• Incorrect decoding of y



Source-Channel Proof (⇐)

• Achievability is proved by using two-stage 
encoding
– Source coding

– Channel coding

• For n > Nε there are only 2n(H(W)+ε) w’s in the 
typical set: encode using n(H(W)+ε) bits
– encoder error < ε

• Transmit with error prob less than ε so long as 
H(W)+ ε < C

• Total error prob < 2ε
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Source-Channel Proof (⇒)

Fano’s Inequality: 
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Separation Theorem

• Important result: source coding and channel coding 
might as well be done separately since same capacity

– Joint design is more difficult

• Practical implication: for a DMC we can design the 
source encoder and the channel coder separately
– Source coding: efficient compression

– Channel coding: powerful error-correction codes

141

• Not necessarily true for

– Correlated channels

– Multiuser channels

• Joint source-channel coding: still an area of research

– Redundancy in human languages helps in a noisy environment



Summary

• Converse to channel coding theorem

– Proved using Fano’s inequality

– Capacity is a clear dividing point:

• If R < C, error prob. � 0

• Otherwise, error prob. � 1

• Feedback doesn’t increase the capacity of DMC

– May increase the capacity of memory channels (e.g., 
ARQ in TCP/IP)

• Source-channel separation theorem for DMC and 
stationary sources
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Lecture 12

• Polar codes

– Channel polarization

– How to construct polar codes

– Encoding and decoding

• Polar source coding

• Extension  
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About Polar Codes
144

• Provably capacity-achieving

• Encoding complexity O(� log�)

• Successive decoding complexity 
O(� log�)

• Probability of error ≈ 2
 �

• Main idea: channel polarization



What Is Channel Polarization?

• Normal channel 

145

sometimes cute,   
sometimes lazy,

hard to manage

• Extreme channel

Polarization

Useless

channel   

Perfect

channel   



Channel Polarization
146

• Among all channels, there are two classes 
which are easy to communicate optimally

– The perfect channels

the output Y determines the input X

– The useless channels

Y is independent of X 

• Polarization is a technique to convert noisy 
channels to a mixture of extreme channels

– The process is information-conserving



Generator Matrix
147

• Generator Matrix

�� =
1 0
1 1

⨂�

, � = 2�

⨂� denotes the n-fold Kronecker product.

• Example 

�� =
1 0
1 1

, �� =
�� 0

�� ��
and so on.

• Encoding

Let u be the length-N input to the encoder, then 
� = ��� is the codeword. 



Channel Combining and Splitting
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Combine

W

W

Y1

Y2

+U1 Y1

Y2

W

W

+U1

U2

W

W

X1

X2

Y1

Y2

W

W

Y1

Y2

+ X1

X2

U1

U2

Channel splitting
(X1, X2)=(U1, U2)��

�
: U1→(Y1, Y2) ��: U2→(Y1, Y2, U1)

• Basic operation (� = 2)



What Happens?
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• Suppose � is a BEC(p), i.e., Y=X with probability 
1 – p, and Y=? (erasure) with probability p.

– �
 has input U1 and output (Y1, Y2)=(U1+U2, U2) or 
(?, U2) or (U1+U2, ?) or (?, ?). 

– �
 is a BEC(2p – p2)

– �� has input U2 and output (Y1, Y2, U1)=(U1+U2, 
U2, U1) or (?, U2, U1) or (U1+U2, ?, U1) or (?, ?, U1).

– �� is a BEC(p2)

• �
 is worse than �, and �� is better (recall 
capacity C(W)=1 – p).

– �(�
) + � �� = 2� �

– �(�
) ≤ �(�) ≤ �(��)



Example: BEC(0.5)
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• W is a BEC with erasure probability p = 0.5.

• If we use two copies of W separately

W

W

X1

X2

Y1

Y2
2 ( ) 2 0.5 1C W = × =



Example: BEC(0.5)
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W

W

Y1

Y2

+ X1

X2

U1

U2

W

W

Y1

Y2

+U1 Y1

Y2

W

W

+U1

U2

• Channel combining and splitting



Example: BEC(0.5)
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• Channel �


W

W

Y1

Y2

+U1

00 0? 01 ?0 ?? ?1 10 1? 11

0 1/8 1/8 0 1/8 1/4 1/8 0 1/8 1/8

1 0 1/8 1/8 1/8 1/4 1/8 1/8 1/8 0
U1

(Y1,Y2)

1
( ) 4 log 2 0.25

16
C W − = × =

Transitional probabilities



Example: BEC(0.5)
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• Channel �� 1
( ) 12 log 2 0.75

16
C W + = × =

Y1

Y2

W

W

+U1

U2

000 0?0 010 ?00 ??0 ?10 100 1?0 110

0 1/8 1/8 0 1/8 1/8 0 0 0 0

1 0 0 0 0 1/8 1/8 0 1/8 1/8

U2
001 0?1 011 ?01 ??1 ?11 101 1?1 111

0 0 0 0 1/8 1/8 0 1/8 1/8 0

1 0 1/8 1/8 0 1/8 1/8 0 0 0

(Y1,Y2,U1)

( ) ( ) 2 ( )

( ) ( ) ( )

C W C W C W

C W C W C W

− +

− +

+ =

< <
Transitional probabilities



More Polarization
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• Repeating this, we obtain N ‘bit channels’ at the n-th step.

• More conveniently, this process can be described as a binary tree.
–Note how the ‘bit channels’ ���� ⋯�"

are labelled in the tree.

…
…

…
…

�


��



Martingale
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• Now pick a ‘bit channel’ uniformly at random on the n-th
level of the tree, which is equivalent to a random 
traverse on the tree, namely, at each step the r.v bi

takes the value of 0 or 1 with equal probability. 

• We claim capacity Cn at the n-th step is a martingale. 

• Proof: By information-preserving

# ���$ %$, … , %� =
1

2
� ���� …�"(

+
1

2
� ���� …�"$

				

= � ���� …�"
= ��

• By the martingale convergence theorem, Cn converges 
to a random variable C∞ such that # �* = # �( = �( =

�(�). 

• In fact, the limit C∞ = 0 or 1 is a binary random variable 
(these are the fixed points of the polar transform).



Review of Martingales

• Let {Xn, n ≥ 0} be a random process. If
# +��$ +�, … , +$, +( = +�

then {Xn} is referred to as a martingale.

• Martingale convergence theorem: Let {Xn, 

n ≥ 0} be a martingale with finite means. 
Then there exists a random variable X∞
such that

+� → +* almost surely
as � → ∞.
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How to construct polar codes
157

• To achieve �(�), we need to identify the 
indices of those bit channels (branches in 
tree) with capacity ≈ 1.

• For BEC, this can be computed recursively 
� ���� …�"(

= � ���� …�"
2

� ���� …�"$
= 2� ���� …�"

− � ���� …�"
2

• For other types of channels, it is difficult 
to obtain closed-form formulas. So 
numerical computation is often used.



Polarization Speed
158

• For any positive real number / < 0.5,

lim
�→*

1

�
# %$⋯%� : � ���� …�"

≥1 − 2
�
7

= �(�).

			 lim
�→*

$

�
# %$⋯%� : � ���� …�"

< 1 − 2
�
7
						

	= 1 − �(�).

• The above statements do not hold for / > 0.5.

• Thus, the polarization speed is roughly 2
 �.



Convergence

• The portion of almost prefect bit channels is 
C(W), meaning that the capacity is achieved.

• Example: capacities for N = 212 for BEC(0.5)
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Encoding
160

• Given � = 2�, calculate � ���� …�"
for all 

synthetic bit channels. 

• Given rate 9 < 1 and : = �9, sort 

� ���� …�"
in descending order and 

define the union of the indices of the first 
: elements as the information set Ω. 

• Choose the information bits <= and freeze 

<=
>

to be all-zero. Obtain the codeword

� = <=, <=
>
∙ ��.



Construction Example
161

• W is a BEC(0.5), � = 8, R=0.5.  



Construction Example
162

• W is a BEC(0.5), � = 8, R=0.5.  

Encoding 

complexity 

A(� log�)



Successive decoding
163

• For the decoding we need to compute the 
likelihood ratio for <B , C = %$⋯%�

D9 <B =
���� …�"

(∙ |1)

���� …�"
(∙ |0)

If C	 ∈ 	Ω, <GB = 1	 if D9 <B > 1; otherwise, 
<GB = 0.

• Similar to � ���� …�"
, D9(<B) can also be 

calculated recursively.

• For more details of the decoding, see
E. Arikan, “Channel polarization: A method for constructing capacity-achieving 
codes for symmetric binary-input memoryless channels,” IEEE Trans. on 
Information Theory,, vol. 55, no. 7, pp. 3051–3073, 2009.



Probability of Error
164

• For a polar code with block length �	and rate 9 < �(�), 
the error probability under the successive cancellation 
decoding is given by

IJ ≤ A(2
�
7
) / < 0.5

Error Bound of the SC decoding for BEC(0.5)



Polar Source Coding
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• Let x be a random variable generated by a 
Bernoulli source Ber(K), i.e., 

Pr(x =0)=K and Pr(x =1)=1 – K.

• The entropy (in bits) of x is 
L x = −K log� K − (1 − K) log�(1 − K)

• If L x = 0, i.e., K = 0	or	1, x is a constant, no 
need for compression.

• If L x = 1, i.e., K = 0.5, x is totally random, we 
cannot do any compression.

• In other cases, can the polarization technique 
be used to achieve rate L x ? 



Source Polarization
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• Similar idea applies to source coding:
general sources               extreme sources

• Basic source polarization

The process is entropy-conserving, but we obtain two 
new sources with higher and lower entropy than the 
original one. 

• Example: when K = 0.11, L x = 0.5, L U1 =

0.713, L U2|U1 = 0.287.

polarization

+ X1 ~ Ber(p)

X2 ~ Ber(p)

U1

U2

U1, U2 = (X1, X2)��

L U1 + L U2 U1 = L U1, U2

						= L X1, X2 = 2L(x)

L U1 ≥ L(x) ≥ L U2 U1



Source Coding
167

• Keep polarizing by increasing �, the entropy of 
the synthetic sources tends to 0 or 1.

• Again, by the property of the martingale, the 
proportion of those sources with entropy close 

to 1 is close to L x . 

• Source coding is realized by recording the 
indexes with entropy close to 1, while the rest 
bits can be recovered with high probability 
because their associated entropy is almost 0. 

• For me details, see 
E. Arikan, “Source polarization,” IEEE ISIT 2010, pp. 899-903.



Performance
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Extensions
169

• Polar codes also achieve capacity of other types 
of channels (discrete or continuous).

• Achieve entropy bound of other types of sources 
(lossless or lossy).

• Quantum polar codes, network information 
theory…

Big bang in information theory



Lecture 13

• Continuous Random Variables

• Differential Entropy

– can be negative

– not really a measure of the information in x

– coordinate-dependent

• Maximum entropy distributions

– Uniform over a finite range

– Gaussian if a constant variance

170



Continuous Random Variables

Changing Variables

• pdf:                  CDF:
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)(xfx ∫ ∞−
=

x

dttfxF )()( xx

)()( 1 yxxy −=⇔= gg

( ) ( ))(1)()( 11 ygFygFyF −− −= xxy or

xxFxxf 5.0)()2,0(5.0)( =⇒∈= xx for

)8,0(125.025.05.0)(25.04 ∈=×=⇒=⇒= yyf foryyxxy

)16,0(125.0¼5.0)( ¾¾¼4 ∈=×=⇒=⇒= −− zzzzf forzzxxz

(a)

(b)

Suppose

according to slope of g(x)

( ) ( ) )(
)(

)(
)(

)( 1
1

1 ygx
dy

dx
xf

dy

ydg
ygf

dy

ydF
yf Y −

−
− ==== wherexxy

• Examples:

• For g(x) monotonic: 



Joint Distributions

Joint pdf:

Marginal pdf:

Independence:

Conditional pdf: 
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),(, yxf yx

∫
∞

∞−
= dyyxfxf ),()( ,yxx

)(
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)(

,

|
yf

yxf
xf
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yx
yx =

)()(),(, yfxfyxf yxyx =⇔

f
X

x

f Y

y

x

y

)1,(),1,0(1, +∈∈= yyxyf for  yx

Example:

)1,(1| +∈= yyxf for  yx

( ))1,min(),1,0max(
)1,min(

1
| xxy

xx
f −∈

−
= for  xy



Entropy of Continuous R.V.

• Given a continuous pdf f(x), we divide the range of x into 
bins of width ∆
– For each i, ∃xi with

• Define a discrete random variable Y
– Y = {xi} and py = {f(xi)∆}

– Scaled, quantised version of f(x) with slightly unevenly spaced xi
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∫
∆+

∆
=∆

)1(

)()(
i

i
i dxxfxf

( )
( )

)(log)(log)(log

)(log)(log

)(log)()(

0
x

y

hdxxfxf

xfxf

xfxfH

ii

ii

+∆−=−∆−→

∆−∆−=

∆∆−=

∫

∑
∑

∞

∞−→∆

∫
∞

∞−
−= dxxfxfh )(log)()( xxx

mean value theorem

• Differential entropy:

•

- Similar to entropy of discrete r.v. but there are differences



Differential Entropy

Differential Entropy:
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)(log)(log)()( xfEdxxfxfh xxxx −=−= ∫
∞

∞−

∆

Good News:
– h1(x) – h2(x) does compare the uncertainty of two continuous 

random variables provided they are quantised to the same 
precision

– Relative Entropy and Mutual Information still work fine

– If the range of x is normalized to 1 and then x is quantised to n

bits, the entropy of the resultant discrete random variable is 
approximately h(x)+n

Bad News:
– h(x) does not give the amount of information in x

– h(x) is not necessarily positive

– h(x) changes with a change of coordinate system



Differential Entropy Examples

• Uniform Distribution:

–

–

– Note that h(x) < 0 if (b–a) < 1
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),(~ baUx

elsewhere  and for  0)(),()()( 1 =∈−= − xfbaxabxf

)log()(log)()( 11 abdxababh
b

a
−=−−−= −−∫x

),(~ 2σµNx

( ) ½
2 2 21

( ) 2 exp ( )
2

f x xπσ µ σ
− − = − − 

 
∫

∞

∞−
−= dxxfxfeh )(ln)()(log)(x

• Gaussian Distribution:

–

–

( )2 2 21
(log ) ( ) ln(2 ) ( )

2
e f x xπσ µ σ

∞ −

−∞
= − − − −∫

( ) bits  e )1.4log(2log½ 2 σσπ ≅=

( )( )2 2 21
(log ) ln(2 ) ( )

2
e E xπσ σ µ−= + −

( )21
(log ) ln(2 ) 1

2
e πσ= +

x

y
y

e

e
x

log

log
log =



Multivariate Gaussian

Given mean, m, and symmetric positive definite covariance matrix K,
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1

1

1
( ) ( ) 2

2

½ T

:n ~ , f exp ( ) ( )
− − ⇔ = π − − − 

 
N m K x K x m K x mx

( ) 11
( ) log ( ) ( ) ( ) ½ ln 2

2

Th f e f dπ− = − × − − − − 
 ∫ x x m K x m K x

( ) ( )( ))()(2lnlog½ 1
mxKmxK −−+×= −TEe π

( ) ( )( )1))((tr2lnlog½ −−−+×= KmxmxK
TEe π

( ) ( )( )1tr2lnlog½ −+×= KKKπe ( ) ( )ne +×= Kπ2lnlog½

( ) ( )Kπ2log½log½ += ne

( ) ( )½ log 2 ½ log (2 )ne eπ π= =K K bits

( ) ( )( )1½ log ln 2 tr ( )( )Te Eπ −= × + − −K x m x m K )(tr)(tr BAAB =

EfxxT = K

tr(I)=n=ln(en)



Other Differential Quantities

Joint Differential Entropy
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(a) must have f(x)=0 ⇒ g(x)=0

(b) continuity ⇒ 0 log(0/0) = 0

Relative Differential Entropy of two pdf’s:

Mutual Information

Conditional Differential Entropy



Differential Entropy Properties

Chain Rules
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Information Inequality Corollaries

Mutual Information ≥ 0
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0)||();( , ≥= yxyxyx fffDI

0);()|()( ≥=− yxyxx Ihh
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==
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i

iin hhh
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all the same as for H()

Independence Bound

Conditioning reduces Entropy



Change of Variable

Change Variable:
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)(xy g=

( )
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ydg
ygfyf
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1
1
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))(log()( yy yfEh −=

Examples:

– Translation: )()(1/ xyxy hhdxdya =⇒=⇒+=

/ ( ) ( ) logc dy dx c h h c= ⇒ = ⇒ = +y x y x

not the same as for H()
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EfE log)(log −−= xx

( )
dy

dx
EgfE log))((log 1 −−= − yx

( ) log
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h E
dx
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– Vector version:

– Scaling:



Concavity & Convexity

• Differential Entropy:

– h(x) is a concave function of fx(x) ⇒ ∃ a maximum

• Mutual Information:

– I(x ; y) is a concave function of fx (x) for fixed fy|x (y)

– I(x ; y) is a convex function of fy|x (y) for fixed fx (x)
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1

0

U
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f(u|x)

X

f(v|x)

1

0

)|()( zxx HH ≥ )()( zyxyx |;I;I ≥ )()( zyxyx |;I;I ≤

Proofs:
Exactly the same as for the discrete case: pz = [1–λ, λ]T



Uniform Distribution Entropy

What distribution over the finite range (a,b) maximizes the 

entropy ?

Answer: A uniform distribution u(x)=(b–a)–1
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)||(0 ufD≤

Proof:

Suppose f(x) is a distribution for x∈(a,b)

)(log)( xx uEh ff −−=

)log()( abh f −≤⇒ x

)log()( abh f −+−= x



Maximum Entropy Distribution

What zero-mean distribution maximizes the entropy on
(–∞, ∞)n for a given covariance matrix K ?

Answer: A multivariate Gaussian
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( )xKxKx
1½

½exp2)( −−
−= Tπφ

)(log)()||(0 xx φφ ff EhfD −−=≤

Since translation doesn’t affect h(X), 

we can assume zero-mean w.l.o.g.

EfxxT = K

tr(I)=n=ln(en)

Proof:

( )Keπ2log½=
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( ) ( ) ( )( )1tr2lnlog½ −+= KK T

fEe xxπ

( ) ( ) ( )( )IK tr2lnlog½ += πe
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Summary

• Differential Entropy:
– Not necessarily positive

– h(x+a) = h(x),       h(ax) = h(x) + log|a|

• Many properties are formally the same
– h(x|y) ≤ h(x) 

– I(x; y) = h(x) + h(y) – h(x, y) ≥ 0,    D(f||g)=E log(f/g) ≥ 0

– h(x) concave in fx(x); I(x; y) concave in fx(x)

• Bounds:
– Finite range: Uniform distribution has max: h(x) = 

log(b–a)

– Fixed Covariance: Gaussian has max: h(x) = 
½log((2πe)n|K|)
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Lecture 14

• Discrete-Time Gaussian Channel Capacity

• Continuous Typical Set and AEP

• Gaussian Channel Coding Theorem

• Bandlimited Gaussian Channel

– Shannon Capacity

185



Capacity of Gaussian Channel

Discrete-time channel: yi = xi + zi

– Zero-mean Gaussian i.i.d. zi ~ N(0,N)

– Average power constraint
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Achievability

• An (M,n) code for a Gaussian Channel with power 

constraint is
– A set of M codewords x(w)∈Xn for w=1:M with x(w)Tx(w) ≤ nP  ∀w

– A deterministic decoder g(y)∈0:M where 0 denotes failure

– Errors:
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e
i
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i
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n
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+

z

Encoder Decoder
x yw∈1:2nR w∈0:2nR

^

♦ = proved on next pages

♦• Theorem: R achievable iff

• Rate R is achievable if ∃ seq of (2nR,n) codes with 



Argument by Sphere Packing

• Each transmitted xi is received as a 

probabilistic cloud yi

– cloud ‘radius’ =

188

• Volume of hypersphere

• Max number of non-overlapping clouds:   

( ) nN=xy |Var

( )NPn +

nr∝

( )
( )11log½

½

½

2
)( −+=

+ PNn

n

n

nN

nNnP

• Max achievable rate is ½log(1+P/N) 

• Energy of yi constrained to n(P+N) so 

clouds must fit into a hypersphere of 
radius

Law of large numbers



Continuous AEP

Typical Set: Continuous distribution, discrete time i.i.d.
For any ε>0 and any n, the typical set with respect to f(x) is
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Typical Set Properties

1.

where    S is the support of f ⇔ {x : f(x)>0}

2.



Continuous AEP Proof

Proof 1: By law of large numbers
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Jointly Typical Set

Jointly Typical: xi, yi i.i.d from ℜ2 with  fx,y (xi,yi)

191

{

}

( ) 2 1

1

1

,

, : log ( ) ( ) ,

log ( ) ( ) ,

log ( , ) ( , )

n n

X

Y

X Y

J n f h

n f h

n f h

ε ε

ε

ε

−

−

−

= ∈ℜ − − <

− − <

− − <

x

y

x y

x y x

y

x y

( )( )

,, log , ( , )nJ f nh nε ε∈ ⇒ = − ±x y x yx y x y

( ) εε ε NnJp n >−>∈ for1, )(yx

( ) ( ) ( )ε
ε

ε
ε

ε +
>

− ≤≤− ),()(),( 2Vol2)1( yxyx hnn
Nn

hn J

( ) ( ) ( )ε
ε

ε
ε

ε 3);()(3);( 2','2)1( −−
>

+− ≤∈≤− yxyx Inn
Nn

In Jp yx

Proof of 4.: Integrate max/min f(x´, y´)=f(x´)f(y´), then use known bounds on Vol(J)

4. Indep x′,y′:

3. Size:

2. Total Prob: 

Properties:

1. Indiv p.d.:



Gaussian Channel Coding Theorem

R is achievable iff
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*:Worst codebook half includes xi: xi
Txi >nP ⇒ λi=1

now max error

We have constructed a code achieving rate R–n–1

Expurgation: Remove half of codebook*: 

Total Err

3. another x J.T. with y

2. y not J.T. with x

Errors: 1. Power too big

Use Joint typicality decoding

Random codebook: 

Proof (⇐):

Choose ε > 0



Gaussian Channel Coding Theorem

Proof (⇒): Assume 
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Bandlimited Channel
• Channel bandlimited to f∈(–W,W) and signal duration T

– Not exactly

– Most energy in the bandwidth, most energy in the interval
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   ⋅
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   
  bits/second

Compare discrete time version: ½log(1+PN–1) bits per channel use

• Capacity:

– Signal power constraint = P ⇒ Signal energy ≤ PT

• Energy constraint per coefficient: n–1xTx<PT/2WT=½W–1P

– white noise with double-sided p.s.d. ½N0 becomes
i.i.d gaussian N(0,½N0) added to each coefficient

• More precisely, it can be represented in a vector space of 
about n=2WT dimensions with prolate spheroidal 
functions as an orthonormal basis

• Nyquist: Signal is defined by 2WT samples



Limit of Infinite Bandwidth

Minimum signal to noise ratio (SNR) 
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Given capacity, trade-off between P and W

- Increase P, decrease W

- Increase W, decrease P

- spread spectrum

- ultra wideband



Channel Code Performance

• Power Limited
– High bandwidth

– Spacecraft, Pagers

– Use QPSK/4-QAM

– Block/Convolution Codes
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Diagram from “An overview of Communications” by John R Barry

• Value of 1 dB for space
– Better range, lifetime, 

weight, bit rate

– $80 M (1999)

• Bandwidth Limited
– Modems, DVB, Mobile 

phones

– 16-QAM to 256-QAM

– Convolution Codes



Summary

• Gaussian channel capacity

• Proved by using continuous AEP

• Bandlimited channel

– Minimum SNR = –1.6 dB as W →∞
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Lecture 15

• Parallel Gaussian Channels

– Waterfilling

• Gaussian Channel with Feedback

– Memoryless: no gain

– Memory: at most ½ bits/transmission

198



Parallel Gaussian Channels

• n independent Gaussian channels 
– A model for nonwhite noise wideband channel where each 

component represents a different frequency

– e.g. digital audio, digital TV, Broadband ADSL, WiFi 
(multicarrier/OFDM)

• Noise is independent zi ~ N(0,Ni)

• Average Power constraint ExTx ≤ nP
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• What is the optimal f(x) ?

• R<C ⇔ R achievable

– proof as before

• Information Capacity:



Parallel Gaussian: Max Capacity

Need to find f(x): 

200

( )∑
=

−+≤
n

i

ii NP
1

11log½
(b)

Translation invariance

x,z indep; Zi indep

(a) indep bound;
(b) capacity limit

Equality when: (a) yi indep ⇒ xi indep; (b) xi ~ N(0, Pi)

( )∑
=

−+
n

i

ii NP
1

11log½

( ):
max ( ; )

T
ff E nP

C I
≤

=
x x x

x y

We need to find the Pi that maximise 

)|()();( xyyyx hhI −= )|()( xzy hh −=

)()( zy hh −= ∑
=

−=
n

i

ihh
1

)()( zy

( )∑
=

−≤
n

i

ii hh
1

)()( zy
(a)



Parallel Gaussian: Optimal Powers

We need to find the Pi that maximise

– subject to power constraint
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Very Noisy Channels

• What if water is not enough?

• Must have Pi ≥ 0 ∀i

• If v < Ni then set Pi=0 and recalculate 
v (i.e., Pi = max(v – Ni,0) )
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Kuhn-Tucker Conditions:

(not examinable)

– Max f(x) subject to Ax+b=0 and

concave  with for    ii gfMig ,:10)( ∈≥x

Axxxx
T

M

i

ii gfJ λ−−= ∑
=1

)()()( µ

0)(,0,0)(,,0)( 000 =≥≥=+=∇ xx0bAxx iiii ggJ µµ

– Solution x0, λ, µi iff

– set



Colored Gaussian Noise

• Suppose y = x + z where E zzT = KZ and E xxT = KX
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– Power constraint is unchanged

• ⇒ Wi are now independent (so previous result on P.G.C. applies)

– Now  QTy = QTx + QTz = QTx + w

where E wwT = E QTzzTQ = E QTKZQ = Λ is diagonal

– Find noise eigenvectors:

• We want to find KX to maximize capacity subject to 

power constraint:

– Use water-filling and indep. messages T

X v+ =Q K Q I Λ



Power Spectrum Water Filling

• If z is from a stationary process 
then diag(Λ) power spectrum 
N(f)
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Gaussian Channel + Feedback

Does Feedback add capacity ?
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Maximum Benefit of Feedback

Having feedback adds at most ½ bit per transmission for colored Gaussian 
noise channels
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Max Benefit of Feedback: Lemmas

Lemma 1: Kx+z+Kx–z = 2(Kx+Kz)

207

( )( ) ( )( )
( )
( ) ( )zx

zxzx

zzxx

zzzxxzxxzzzxxzxx

zxzxzxzx

KK

KK

+=+=

+−−++++=

−−+++=+ −+

222 TT

TTTTTTTT

TT

E

E

EE
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Conditioning reduces h()

Translation invariance
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Gaussian Feedback Coder

x and z jointly gaussian ⇒

where v is indep of z and
B is strictly lower triangular since xi indep of zj for j>i.
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Gaussian Feedback: Toy Example
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b=0: |Ky|=16 C=0.604 bits

Feedback increases C by 16% 
12211 zvxvx bPPPPP +==

b=0.69: |Ky|=20.7 C=0.697 bits



Summary

• Water-filling for parallel Gaussian channel

• Colored Gaussian noise

• Continuous Gaussian channel

• Feedback bound
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Lecture 16

• Lossy Source Coding

– For both discrete and continuous sources 

– Bernoulli Source, Gaussian Source

• Rate Distortion Theory

– What is the minimum distortion achievable at 
a particular rate?

– What is the minimum rate to achieve a 
particular distortion?

• Channel/Source Coding Duality
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Lossy Source Coding

Distortion function:

– examples: (i) (ii)
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Distortion of Code fn( ), gn( ):

– sequences:



Rate Distortion Function

Rate Distortion function for {xi} with pdf p(x) is defined as
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– this expression is the Rate Distortion function for X
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R(D) bound for Bernoulli Source

Bernoulli: X = [0,1], pX = [1–p , p] assume p ≤ ½

– Hamming Distance:
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R(D) for Bernoulli source

We know optimum satisfies R(D) ≥ H(p) – H(D)

– We show we can find a            that attains this.
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R(D) bound for Gaussian Source

• Assume
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R(D) for Gaussian Source

To show that we can find a                
that achieves the bound, we 
construct a test channel that 
introduces distortion D<σ2
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Lloyd Algorithm

Problem: Find optimum quantization levels for Gaussian pdf
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a. Bin boundaries are midway between quantization levels

Best mean sq error for 8 levels = 0.0345σ2. Predicted D(R) = (σ/8)2 = 0.0156σ2



Vector Quantization
To get D(R), you have to quantize many values together

– True even if the values are independent
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Multiple Gaussian Variables

• Assume x1:n are independent gaussian sources with 
different variances. How should we apportion the 
available total distortion between the sources?

220

( ) ( ) DndN
T

ii ≤−−= −
xxxxxx ˆˆ)ˆ,(),0(~ 12  and σx

Mut Info Independence Bound
for independent xi

R(D) for individual 
Gaussian

We must find the Di that minimize

∑
=








n

i i

i

D1

2

0,log½max
σ

• Assume

∑
=

≥
n

i

iinn II
1

:1:1 )ˆ;()ˆ;( xxxx

∑∑
==









=≥

n

i i

i
n

i

i
D

DR
1

2

1

0,log½max)(
σ

2

0 0

2

1

1

if

otherwise

such that

i

i

i

n

i

i

D D
D

n D D

σ

σ

−

=

 <
⇒ = 



=∑



Reverse Water-filling

Use a Lagrange multiplier:
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Channel/Source Coding Duality
Noisy channel

222

• Channel Coding

– Find codes separated enough to 
give non-overlapping output 
images.

– Image size = channel noise

– The maximum number (highest 
rate) is when the images just don’t 
overlap (some gap). Lossy encode

Sphere Packing

Sphere Covering

• Source Coding

– Find regions that cover the sphere

– Region size = allowed distortion

– The minimum number (lowest rate) 
is when they just fill the sphere 
(with no gap).



Gaussian Channel/Source

• Capacity of Gaussian channel (n: length)

– Radius of big sphere

– Radius of small spheres

– Capacity

• Rate distortion for Gaussian source

– Variance σ2 → radius of big sphere

– Radius of small spheres        for distortion D

– Rate
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Channel Decoder as Source Encoder

• For                                        , we can find a channel 
encoder/decoder so that
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We have encoded x at rate R=½log(σ2D–1) with distortion D!

• Now reverse the roles of encoder and decoder. Since 

+

z
1:n

 ~ N(0,D)

x
1:n

 ~ N(0,σ2)Channel

Encoder

Channel

Decoder
w w∈2nR^

y
1:n

Channel

Encoder

x̂
1:n

Source coding

Source encoder   Source decoder

+

z
1:n

 ~ N(0,D)

x
1:n

 ~ N(0,σ2)
Encoder Decoder

w∈2nR w∈2nR^y
1:n

 ~ N(0,σ2–D)



Summary

• Lossy source coding: tradeoff between rate and 
distortion

• Rate distortion function

• Bernoulli source: R(D) = (H(p) – H(D))+

• Gaussian source
(reverse waterfilling):

• Duality: channel decoding (encoding) ⇔ source 
encoding (decoding)
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Nothing But Proof

• Proof of Rate Distortion Theorem

– Converse: if the rate is less than R(D), then 
distortion of any code is higher than D

– Achievability: if the rate is higher than R(D), 
then there exists a rate-R code which 
achieves distortion D
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Quite technical!



Review

Rate Distortion function for x whose px(x) is known is
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Rate Distortion Theorem:



Converse: Rate Distortion Bound

We want to prove that

228

∑−≥
i

iiInR )ˆ;(1
0 xx

( ))ˆ;()ˆ;( iiii dERI xxxx ≥

( ) ( )1 1ˆ ˆ ˆ( ; ) ( ; ) ( ; ) ( )i i i i

i i

n R E d R n E d R E d R D− − 
≥ = = 

 
∑ ∑x x x x x x

We prove convexity first and then the rest

Defn of R(D)
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Convexity of R(D)
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Proof that R ≥ R(D)
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Rate Distortion Achievability

We want to show that for any D, we can find an encoder 
and decoder that compresses x1:n to nR(D) bits.

• pX is given

• Assume we know the             that gives
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• Random codebook: Choose 2nR random

– There must be at least one code that is as good as the average
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First define the typical set we will use, then prove two preliminary results.

• Encoder: Use joint typicality to design

– We show that there is almost always a suitable codeword



Distortion Typical Set

Distortion Typical:
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Conditional Probability Bound

Lemma:
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Curious but Necessary Inequality

Lemma:
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Achievability of R(D): preliminaries

•
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Expected Distortion

We can divide the input vectors x into two categories:
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Error Probability

Define the set of valid inputs for (random) code g
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Achievability for Average Code

Since
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Achievability for Average Code
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Achievability

Hence (R,D) is achievable for any R > R(D)
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Lecture 17

• Introduction to network information 
theory

• Multiple access

• Distributed source coding
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Network Information Theory

• System with many senders and receivers

• New elements: interference, cooperation, 
competition, relay, feedback…

• Problem: decide whether or not the sources can 
be transmitted over the channel

– Distributed source coding

– Distributed communication

– The general problem has not yet been solved, so we 
consider various special cases

• Results are presented without proof (can be 
done using mutual information, joint AEP)
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Implications to Network Design

• Examples of large information networks
– Computer networks
– Satellite networks
– Telephone networks

• A complete theory of network communications 
would have wide implications for the design of 
communication and computer networks

• Examples
– CDMA (code-division multiple access): mobile phone 

network
– Network coding: significant capacity gain compared to 

routing-based networks
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Network Models Considered

• Multi-access channel

• Broadcast channel

• Distributed source coding 

• Relay channel

• Interference channel

• Two-way channel

• General communication network
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State of the Art

• Triumphs

– Multi-access channel

– Gaussian broadcast 
channel

• Unknowns

– The simplest relay 
channel

– The simplest 
interference channel

245

Reminder: Networks being built (ad hoc networks, sensor 
networks) are much more complicated



Multi-Access Channel

• Example: many users 
communicate with a 
common base station over 
a common channel

• What rates are achievable 
simultaneously?

• Best understood multiuser 
channel

• Very successful: 3G CDMA 
mobile phone networks
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Capacity Region

• Capacity of single-user Gaussian channel

• Gaussian multi-access channel with m users

• Capacity region
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Two-User Channel
• Capacity region

– Corresponds to CDMA

– Surprising fact: sum rate 
= rate achieved by a single sender with power P1+P2

• Achieves a higher sum rate than treating 
interference as noise, i.e.,

1 2
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P P
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P N P N
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Onion Peeling

• Interpretation of corner point: onion-peeling

– First stage: decoder user 2, considering user 1 as noise

– Second stage: subtract out user 2, decoder user 1

• In fact, it can achieve the entire capacity region

– Any rate-pairs between two corner points achievable by time-
sharing

• Its technical term is successive interference cancelation 
(SIC)

– Removes the need for joint decoding

– Uses a sequence of single-user decoders

• SIC is implemented in the uplink of CDMA 2000 EV-DO 
(evolution-data optimized)

– Increases throughput by about 65%

249



Comparison with TDMA and FDMA
• FDMA (frequency-division multiple access)

• TDMA (time-division multiple access)
– Each user is allotted a time slot, transmits and other 

users remain silent

– Naïve TDMA: dashed line

– Can do better while still maintaining the same 
average power constraint; the same capacity region 
as FDMA

• CDMA capacity region is larger
– But needs a more complex decoder
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Distributed Source Coding

• Associate with nodes are sources that are 
generally dependent

• How do we take advantage of the dependence 
to reduce the amount of information 
transmitted?

• Consider the special case where channels are 
noiseless and without interference

• Finding the set of rates associate with each 
source such that all required sources can be 
decoded at destination

• Data compression dual to multi-access channel
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Two-User Distributed Source Coding

• X and Y are correlated

• But the encoders cannot 
communicate; have to 
encode independently

• A single source: R > H(X)

• Two sources: R > H(X,Y) if 

encoding together
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• What if encoding separately?

• Of course one can do R > H(X) + H(Y)

• Surprisingly, R = H(X,Y) is sufficient (Slepian-Wolf 
coding, 1973)

• Sadly, the coding scheme was not practical (again)



Slepian-Wolf Coding
• Achievable rate region

• Core idea: joint typicality

• Interpretation of corner point R1 = 
H(X), R2 = H(Y|X)
– X can encode as usual

– Associate with each xn is a jointly 
typical fan (however Y doesn’t know)

– Y sends the color (thus compression)

– Decoder uses the color to determine 
the point in jointly typical fan 
associated with xn

• Straight line: achieved by time-
sharing
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Wyner-Ziv Coding

• Distributed source coding with side information

• Y is encoded at rate R2

• Only X to be recovered

• How many bits R1 are 
required?

• If R2 = H(Y), then R1 = H(X|Y) by Slepian-Wolf coding

• In general

where U is an auxiliary random variable (can be 
thought of as approximate version of Y)
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Rate-Distortion

• Given Y, what is the rate-
distortion to describe X?

• The general problem of 
rate-distortion for 
correlated sources 
remains unsolved
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Lecture 18

• Network information theory – II

– Broadcast

– Relay

– Interference channel

– Two-way channel

– Comments on general communication 
networks
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Broadcast Channel

• One-to-many: HDTV station sending different 
information simultaneously to many TV receivers 
over a common channel; lecturer in classroom

• What are the achievable rates for all different 
receivers?

• How does the sender encode information meant 
for different signals in a common signal?

• Only partial answers are known.
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Two-User Broadcast Channel

• Consider a memoryless broadcast channel with 
one encoder and two decoders

• Independent messages at rate R1 and R2

• Degraded broadcast channel: p(y1, y2|x) = p(y1|x) 

p(y2| y1)

– Meaning X → Y1 → Y2 (Markov chain)

– Y2 is a degraded version of Y1 (receiver 1 is better)

• Capacity region of degraded broadcast channel
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Scalar Gaussian Broadcast Channel

• All scalar Gaussian broadcast channels belong to 
the class of degraded channels

• Capacity region
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Coding Strategy

Encoding: one codebook with power αP at 
rate R1, another with power (1-α)P at rate 
R2, send the sum of two codewords

Decoding: Bad receiver Y2 treats Y1 as noise; 
good receiver Y1 first decode Y2, subtract it 

out, then decode his own message



Relay Channel

• One source, one destination, one or more 
intermediate relays

• Example: one relay

– A broadcast channel (X to Y and Y1)

– A multi-access channel (X and X1 to Y)

– Capacity is unknown! Upper bound:

– Max-flow min-cut interpretation

• First term: maximum rate from X and X1 to Y

• Second term: maximum rate from X to Y and Y1
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Degraded Relay Channel

• In general, the max-flow min-cut bound cannot 
be achieved 

• Reason

– Interference

– What for the relay to forward?

– How to forward?

• Capacity is known for degraded relay channel 
(i.e, Y is a degradation of Y1, or relay is better 

than receiver), i.e., the upper bound is achieved

1

1 1 1
( , )

sup min{ ( , ; ), ( ; , | )}
p x x

C I X X Y I X Y Y X=
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Gaussian Relay Channel

• Channel model

• Encoding at relay:

• Capacity

– If

then                     (capacity from source to relay can 
be achieved; exercise)

– Rate                       without relay is increased by the 
relay to 
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Interference Channel
• Two senders, two receivers, with crosstalk

– Y1 listens to X1 and doesn’t care 
what X2 speaks or what Y2 hears

– Similarly with X2 and Y2

• Neither a broadcast channel nor a multiaccess channel

• This channel has not been solved

– Capacity is known to within one bit (Etkin, Tse, Wang  
2008)

– A promising technique  interference alignment
(Camdambe, Jafar 2008)
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Symmetric Interference Channel
• Model

• Capacity has been derived in the strong 
interference case (a ≥ 1) (Han, Kobayashi, 1981)

– Very strong interference (a2 ≥ 1 + P/N) is equivalent to 

no interference whatsoever

• Symmetric capacity (for each user R1 = R2)
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Capacity
265



Very strong interference = no interference

• Each sender has power P and rate C(P/N)

• Independently sends a codeword from a 
Gaussian codebook

• Consider receiver 1

– Treats sender 1 as interference

– Can decode sender 2 at rate C(a2P/(P+N))

– If C(a2P/(P+N)) > C(P/N), i.e.,
rate 2 � 1 > rate 2 � 2    (crosslink is better)

he can perfectly decode sender 2

– Subtracting it from received signal, he sees a clean 
channel with capacity C(P/N)
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An Example

• Two cell-edge users (bottleneck of the cellular network)
• No exchange of data between the base stations or 

between the mobiles
• Traditional approaches

– Orthogonalizing the two links (reuse ½)
– Universal frequency reuse and treating interference as noise

• Higher capacity can be achieved by advanced 
interference management
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Two-Way Channel
• Similar to interference channel, but in both 

directions (Shannon 1961)

• Feedback

– Sender 1 can use previously
received symbols from sender 2, and vice versa

– They can cooperate with each other

• Gaussian channel:

– Capacity region is known (not the case in general)

– Decompose into two independent channels
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General Communication Network

• Many nodes trying to communicate with each other

• Allows computation at each node using it own message 
and all past received symbols

• All the models we have considered are special cases

• A comprehensive theory of network information flow is 
yet to be found
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Capacity Bound for a Network

• Max-flow min-cut

– Minimizing the maximum
flow across cut sets 
yields an upper bound 
on the capacity of a 
network

• Outer bound on capacity 
region

– Not achievable in general
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Questions to Answer

• Why multi-hop relay? Why 
decode and forward? Why 
treat interference as noise?

• Source-channel separation? 
Feedback?

• What is really the best way 
to operate wireless 
networks? 

• What are the ultimate limits 
to information transfer over 
wireless networks?
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Scaling Law for Wireless Networks

• High signal attenuation: 
(transport) capacity is O(n) 
bit-meter/sec for a planar 
network with n nodes (Xie-
Kumar’04)

• Low attenuation: capacity can 
grow superlinearly

• Requires cooperation between 
nodes

• Multi-hop relay is suboptimal 
but order optimal
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Network Coding

• Routing: store and forward 
(as in Internet)

• Network coding: recompute 
and redistribute

• Given the network topology, 
coding can increase 
capacity (Ahlswede, Cai, Li, 
Yeung, 2000)

– Doubled capacity for butterfly 
network

• Active area of research
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Lecture 19

• Revision Lecture
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Summary (1)

• Entropy:

– Bounds:

– Conditioning reduces entropy:

– Chain Rule:

• Relative Entropy:
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Summary (2)

• Mutual Information: 

– Positive and Symmetrical:

– x, y indep ⇔

– Chain Rule:
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Summary (3)

• Convexity: f’’ (x) ≥ 0 ⇒ f(x) convex ⇒ Ef(x) ≥ f(Ex)

– H(p) concave in p

– I(x ; y) concave in px for fixed py|x

– I(x ; y) convex in py|x for fixed px

• Markov:

⇒ I(x ; y) ≥ I(x ; z) and  I(x ; y) ≥ I(x; y | z)

• Fano:

• Entropy Rate:

– Stationary process 

– Markov Process:
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Summary (4)

• Kraft: Uniquely Decodable ⇒ ⇒ ∃ instant code

• Average Length: Uniquely Decodable ⇒ LC = E l(x) ≥ HD(x)

• Shannon-Fano: Top-down 50% splits. LSF ≤ HD(x)+1

• Huffman: Bottom-up design. Optimal.
– Designing with wrong probabilities, q ⇒ penalty of D(p||q)

– Long blocks disperse the 1-bit overhead

• Lempel-Ziv Coding:

– Does not depend on source distribution

– Efficient algorithm widely used

– Approaches entropy rate for stationary ergodic sources
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Summary (5)

• Typical Set

– Individual Prob

– Total Prob

– Size

– No other high probability set can be much smaller

• Asymptotic Equipartition Principle

– Almost all event sequences are equally surprising
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Summary (6)

• DMC Channel Capacity:

• Coding Theorem

– Can achieve capacity: random codewords, joint typical decoding

– Cannot beat capacity: Fano inequality

• Feedback doesn’t increase capacity of DMC but could 
simplify coding/decoding

• Joint Source-Channel Coding doesn’t increase capacity of 
DMC

280

);(max yx
x

IC
p

=



Summary (7)

• Polar codes are low-complexity codes directly built from 
information theory.

• Their constructions are aided by the polarization 
phenomenon.

• For channel coding, polar codes achieve channel 
capacity.

• For source coding, polar codes achieve the entropy 
bound.

• And much more.
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Summary (8)

• Differential Entropy:

– Not necessarily positive

– h(x+a) = h(x),       h(ax) = h(x) + log|a|,       h(x|y) ≤ h(x) 

– I(x; y) = h(x) + h(y) – h(x, y) ≥ 0,    D(f||g)=E log(f/g) ≥ 0

• Bounds:
– Finite range: Uniform distribution has max: h(x) = log(b–a)

– Fixed Covariance: Gaussian has max: h(x) = ½log((2πe)n|K|)

• Gaussian Channel
– Discrete Time: C=½log(1+PN–1)

– Bandlimited: C=W log(1+PN0
–1W–1)

• For constant C: 

– Feedback: Adds at most ½ bit for coloured noise
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Summary (9)

• Parallel Gaussian Channels: Total power constraint

– White noise: Waterfilling:

– Correlated noise: Waterfill on noise eigenvectors

• Rate Distortion:

– Bernoulli Source with Hamming d: R(D) = max(H(px)–H(D),0)

– Gaussian Source with mean square d: R(D) = max(½log(σ2 D–1),0)

– Can encode at rate R: random decoder, joint typical encoder

– Can’t encode below rate R: independence bound
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Summary (10)

• Gaussian multiple access 
channel

• Distributed source coding

– Slepian-Wolf coding

• Scalar Gaussian broadcast channel

• Gaussian Relay channel
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Summary (11)

• Interference channel
– Strong interference = no interference

• Gaussian two-way channel
– Decompose into two independent channels

• General communication network
– Max-flow min-cut theorem

– Not achievable in general

– But achievable for multiple access channel 
and Gaussian relay channel
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