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Claude Shannon

C. E. Shannon, "A mathematical theory
of communication,” Bell System
Technical Journal, 1948.

Two fundamental questions in
communication theory:

Ultimate limit on data compression
— entropy

Ultimate transmission rate of
communication 1916 - 2001
— channel capacity

Almost all important topics in
information theory were initiated by
Shannon




Origin of Information Theory

Common wisdom in 1940s:
— It is impossible to send information error-free at a positive rate
— Error control by using retransmission: rate — 0 if error-free

Still in use today

— ARQ (automatic repeat request) in TCP/IP computer networking
Shannon showed reliable communication is possible for
all rates below channel capacity

As long as source entropy is less than channel capacity,
asymptotically error-free communication can be achieved

And anything can be represented in bits
— Rise of digital information technology



Relationship to Other Fields




Course Objectives

e In this course we will (focus on communication
theory):
— Define what we mean by information.

— Show how we can compress the information in a
source to its theoretically minimum value and show
the tradeoff between data compression and
distortion.

— Prove the channel coding theorem and derive the
information capacity of different channels.

— Generalize from point-to-point to network information
theory.



Relevance to Practice

o Information theory suggests means of achieving
ultimate limits of communication

— Unfortunately, these theoretically optimum schemes
are computationally impractical

— So some say “little info, much theory” (wrong)

e Today, information theory offers useful
guidelines to design of communication systems
— Polar code (achieves channel capacity)
— CDMA (has a higher capacity than FDMA/TDMA)
— Channel-coding approach to source coding (duality)
— Network coding (goes beyond routing)



Books/Reading

Book of the course:

Elements of Information Theory b¥ T M Cover & J A Thomas, Wiley,
£39 for 2" ed. 2006, or £14 for 1t ed. 1991 (Amazon)

Free references

Information Theory and Network Coding by R. W. Yeung, Springer
http://iest2.ie.cuhk.edu.hk/~whyeung/book2/

Information Theory, Inference, and Learning Algorithms by D
MacKay, Cambridge University Press
http://www.inference.phy.cam.ac.uk/mackay/itila/

Lecture Notes on Network Information Theory by A. E. Gamal and
Y.-H. Kim, (Book is published by Cambridge Unlver5|ty Press)
http://arxiv.org/abs/1001.3404

C. E. Shannon, “A mathematical theory of communication,” Be//
System Technical Journal, Vol. 27, pp. 379-423, 623—-656, July,
October, 1948.



Other Information

Course webpage:

http://www.commsp.ee.ic.ac.uk/~cling

Assessment: Exam only — no coursework.

Students are encouraged to do the problems in
problem sheets.

Background knowledge

— Mathematics

— Elementary probability

Needs intellectual maturity

— Doing problems is not enough; spend some time
thinking



Notation

Vectors and matrices

— v=vector, V=matrix

Scalar random variables

— x = R.V, x = specific value, X = alphabet
Random column vector of length ¥

— X = R.V, x = specific value, XV = alphabet
— X, and x; are particular vector elements
Ranges

— a:b denotes the range a, a+1, ..., b

Cardinality
— |X| = the number of elements in set X

10
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Discrete Random Variables

e A random variable x takes a value x from
the alphabet X with probability p (x). The
vector of probabilities is p, .

Examples:
X = [152;3;:4:5:6], py= [Yes Vs Vs Vs Vs V]

“english text”
X =1[a; b;..., y; z; <space>]
p,= [0.058; 0.013; ...; 0.016; 0.0007; 0.193]



Expected Values

e If g(x) is a function defined on X then
E, g(x)=) p(x)g(x)

xeX
Examples:

X = [1;2;3;4:5:6], px= [Ys; V> Vs Vs Ve V]
EXx=35=u
Ex>=1517T=0c’+u’
E sin(0.1x) = 0.338
E —log,(p(Xx))=2.58

12



Shannon Information Content

The Shannon Information Content of an outcome

with probability p is —log,p
Shannon’s contribution — a statistical view

— Messages, noisy channels are random
— Pre-Shannon era: deterministic approach (Fourier...)

Example 1: Coin tossing
= [Head; Tail], p =['; ], SIC =[1; 1] bits
Example 2. Is it my birthday ?

= [No; Yes], p = [***/54s; /3651,
SIC =[0.004; 8.512] bits

13



Minesweeper

e \Where is the bomb ?

e 16 possibilities — needs 4 bits to specify

Guess

P WN

No
No
No
Yes

Prob

15/16
14/15
13/14
13

Total

SIC

0.093
0.100
0.107
3.700

4.000

Dits
Dits
Dits
DIts

DItS

14



Minesweeper

e Where is the bomb ?
e 16 possibilities — needs 4 bits to specify

Guess Prob
1. No 1/

SIC
0.093 bits

15
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Entropy

H(x)=E ~log,(p,(X)) == p,(x)log, p,(x)

xeX

— H(x) = the average Shannon Information Content of x
— H(x) = the average information gained by knowing its value

— the average number of “yes-no” questions needed to find x is in
the range [H(X),H(X)+1)

— H(x) = the amount of uncertainty before we know its value
We use log(x) = log,(x) and measure H(x) in bits

— if you use log, it is measured in nats

— 1 nat =log,(e) bits = 1.44 bits
In( x) dlog,x log,e
In(2) dx X

. log,(x) =
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Entropy Examples

(1) Bernoulli Random Variable
X=[0;1], p,= [1-p; p] %:

H(x)=—(1-p)logl—p)—plogp
Very common — we write H(p) to
mean H([1-p; p)).

00 0.2 0.4 0.6 0.8 1

H(p)=—(1-p)log(l-p)—plogp
H'(p)=log(l1-p)-logp
H'"(p)=-p '(1-p)'loge

(2) Four Coloured Shapes
X=[0; 5 & @] p=["2 Ya; g ']

H(x)=H(p,) =) ~log(p(x))p(x)
=1xVa+2xYa+3x % +3x ¥ =1.75 bits



Comments on Entropy

e Entropy plays a central role in information
theory

e Origin in thermodynamics

— S=k1InQ, k: Boltzman’s constant, Q: humber of
microstates

— The second law: entropy of an isolated system is non-
decreasing
e Shannon entropy
— Agrees with intuition: additive, monotonic, continuous

— Logarithmic measure could be derived from an
axiomatic approach (Shannon 1948)

18



Lecture 2

e Joint and Conditional Entropy
— Chain rule

e Mutual Information

— If xand y are correlated, their mutual information is
the average information that y gives about x
e E.g. Communication Channel: x transmitted but y received

e It is the amount of information transmitted through the
channel

e Jensen’s Inequality

19
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Joint and Conditional Entropy

pxy | =0 )=l

Joint Entropy: H(x,))

X=0 2 Va
X=1 0 .
H(X,y)=E ~log p(X, ) :
=-2log'>—"slog's—0log0—"slog”s =1.5 bits
Conditional Entropy: H(y|X) o D)=
x=0 [y 4
H(y|x)=E -log p(y|X) x=1 0 1

= —Z p(x,y)log p(y|x)

= 1/zlog/ Yalog ¥, —0log0—"4log1 = 0.689 bits
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Conditional Entropy — View 1

Additional Entropy: pxXy) | 0 )=l |pXx
py1x)=px,y)+ p(x) X=0 Vo Va | %
Hy|x)=E-logp(y|X) x=1 0 Va | Va

= E {-log p(x, y)} — E {~log p(X)}
=H(Xx,y)-HX)=H(%,,0,%)—H(¥,Y%)=0.689 bits

H(X,))
T
H(X) I
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Conditional Entropy — View 2

Average Row Entropy: pxy | ¥0 yl 1 HY X)) | pX)

X=0 1 a H(1/3) a
Xx=1 0 Va H(1) 4

H(y|x)=E-logp(y|x)= Z p(x,y)log p(y | x)
—Z p(X)p(yIX)logp(yIX) ZP(X)Z p(y|x)log p(y|x)

= Zp(x)H (V| x =x)=%xH(%)+Vix H(O) — 0.689 bits
xeX



Chain Rules

e Probabilities
p(Xx.,y,z)y=pz|x,y)p(y | X)p(Xx)

e Entropy
H(X,y,z2)=H(Z|X,y)+H(y | X)+H(X)

H(Xlzn):iH(Xi |X1:i—1)

products




Mutual Information

Mutual information is the average amount of
information that you get about x from observing

the value of y
- Or the reduction in the uncertainty of X' due to

knowledge of y
I(x;y)=HX)-H(X|y)=H(X)+H(y)-H(X,y)

Mutual information is
symmetrical @)
I(x;y)=1(y;X) HX) H(Y)

24
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Mutual Information Example

pxy | ¥0 ¥ 1 e If you try to guess y you have a 50%

Xx=0 2 Va chance of being correct.

x=1 0 % o However, what if you know x?
— Best quess: choose y= x

— If x=0 (p=0.75) then 66% correct prob

— If x=1 (p=0.25) then 100% correct prob
15 — Overall 75% correct probability

H(x,y)

I(x;y)=H(X)-H(Xx|)y)
=HX)+H(Y)-H(X,))
H(x)=0811, H(y)=1, HWX,y)=1.5
H(X)=0.811 H(y=1 I(x:¥)=0311




26

Conditional Mutual Information

Conditional Mutual Information
Ix;y|z)y=H(Xx|2)-H(x|y,2)
=H(X|2)+H(y|2)-H(Xx,y|2)

Chain Rule for Mutual Information

I(X, X0, X5 V) =1(X5 )+ LX)y | X))+ (X5 Y | X, X5)

1(X,,3)) :Zl(xi;y|xl:i—l)
i=1



H(X,y)

Review/Preview 27

e Entropy: Hx)=> -log,(p(x))p(x)=E —log,(py(x))
— Positive and bf)efmded 0<H(x)<log|X|
e Chain Rule: H&x.»)=HM)+Hy |X)<H(X)+H(y)
— Conditioning reduces entropy H(y |X)<H(y)
e Mutual Information:
I(y;x)=H(Y)-HWY|xX)=HX)+H(y)-H(X,))
— Positive and Symmetrical 7(x;y)=1(y;x)>0

— xand yindependent < H(x,y)=H(y)+H(X)
< I(x;y)=0
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Convex & Concave functions

f(x) is strictly convex over (a,b) if
f(Au+A-AW) < Af(u)+(1-A)f(v) Yuz#ve(a,b),0<A<I

— every chord of f{(x) lies above f(x) Concave is like this

— flx)is < —flx)is g

e Examples :
— Strictly Convex: x°, x*,e*, xlogx[x>0] = ° &/ -
— Strictly Concave: log x, \/; [x>0] e | y ;

— Convex and Concave: x

d2
— Test: dx{ >0 Vxel(a,b) = f{x) is strictly convex

(not strictly) uses “"<" in definition and ">" in test



29

Jensen’s Inequality

: (2) fix) convex = Ef(X) > AEX)
(b) f(x) strictly convex = Ef(x) > f(Ex) unless x constant
Proof by induction on [X]
— [X[=10 Ef(x)= f(EX) f(x)
— [X[=k E f(x)= pr(x)—pkf(xk)ﬂl pk

i=1 l—p

>p.f(x)+(0- Pk)f[zl pp Xz)

Zf[pkxk_'_(l_pk Z l_plp xi):f(Ex)



Jensen’s Inequality Example

Mnemonic example:
flx) = x? : strictly convex
X=[-1;+1] 4

p =17 7]
Ex=0

AE %=0
Efx)=1>AE X |

3t
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Summary

e Chain Rule:
H(X.y)=H(y | )+ H(X) m)
e Conditional Entropy: H(X) H(y)

H(y|x)=H(x,y)-H(x)=> p(x)H(y | x)

— Conditioning reduces entropy*<*

H(y|x)<H(y)
e Mutual Information 1(x;y)=HX)-H(x|y)<H(xX)

— In communications, mutual information is the
amount of information transmitted through a noisy
channel

e Jensen’s Inequality fix) convex = EAX) > AEX)



Lecture 3

o Relative Entropy
— A measure of how different two probability mass
vectors are
e Information Inequality and its consequences

— Relative Entropy is always positive
e Mutual information is positive
e Uniform bound
e Conditioning and correlation reduce entropy

e Stochastic Processes
— Entropy Rate
— Markov Processes

32
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Relative Entropy

or
between two probability mass vectors p and q

B px) _ pX) . _
D(p ||q)—;(p(x)log e =E, log o) =E, (~logg(x))- H(X)

where £, denotes an expectation performed using probabilities p

D(p||q) measures the “distance” between the probability
mass functions p and q.

We must have p=0 whenever ¢ =0 else D(p||q)=x

Beware: D(pl|q) is not a true distance because:

— (1) it is asymmetric between p, q and
— (2) it does not satisfy the triangle inequality.



Relative Entropy Example

X=[123456]

o=l Y6 Yo Yo Vo el = Hm=258s
‘1:/0 Mo Mo Mo Mo /]:H(q) 2161

D(pllq)=E, (-logg,)—H(p)=2.935-2.585=0.35
D(q||p)=E,(-logp,)—H(q)=2.585-2.161=0.424

34



Information Inequality

D(p|lq)=0
e Define A={x:p(x)>0}c X

o p _ loe PX) q(x)
Proof -bpllq)= Zp<x> o5 ;\p() o8

< 1og[2 p(x) qix))] - log(z q(x)j < log(z q(x)j ~logl =0
xeA pP\x xeA xeX

If D(p|/q)=0: Since log( ) is strictly concave we have equality in the
proof only if ¢(x)/p(x), the argument of log, equals a constant.

But Zp(x) :Z g(x)=1  so the constant must be 1 and p=q

xeX xeX

35



Information Inequality Corollaries

e Uniform distribution has highest entropy
—Set q =[IX[", ..., [ X[1]T giving H(q)=log|X| bits

D(p|lq)=E,{~logq(x)j— H(p) =log| X|-H(p)>0

e Mutual Information is non-negative

I(y:x) = HOX)+ H(y)— H(x.y) = E log—2X:Y)
p(X)p(y)

=D(p(X,y) || p(X)p(¥)) =0
with equality only if p(x,)) = p(X)p(y) < xand y are independent.

36
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More Corollaries

e Conditioning reduces entropy
0<I(X;y)=HWY)-HWY|x) = HYI[X)<H(Y)

with equality only if x and y are independent.
e Independence Bound
H(Xlzn) — ZH(XZ | Xl:i—l) < ZH(Xz)
i=l1 i=l1

with equality only if all x are independent.



Conditional Independence Bound

e Conditional Independence Bound
HOG, V1) = L HOG X000, € S HOGL )

e Mutual Information Independence Bound

If all x are independent or, by symmetry, if all y; are independent:

](Xlzn;ylzn) :H(Xlzn)_H(Xlzn |y1:n)

> iH(XZ.)—iH(Xi |y1) :i](){i;yi)

38



Stochastic Process

Stochastic Process {x;} = x;, x,, ...

often

Entropy: H({{x.})=H(X)+H(X,|X)+... = ©

Entropy Rate: H(X) = lim— H(x,, ) if limit exists

n—>0o0 n

Examples:

— Typewriter with m equally likely letters each time: H(X)=logm
— x i.i.d. random variables: H(X)=H(X,)

39



Stationary Process

Stochastic Process {x} is iff
p(Xlzn — al:n) — p(Xk+(1:n) — al:n) \V/k, nﬂai € X
If {x} is stationary then H(X) exists and
H(X) = lim~ H(x,,) = lim H (X, | X, ,)

n—»ao n

(a) (b)
PrOOf: 0 < H(Xn | Xl:n—l) < H(Xn | X2:n—1) — H(Xn—l | Xl:n—2)

Hence H(x | x,.,.,) is positive, decreasing = tends to a limit, say b

Hence
I I
H(Xk|X1:k—1)_>b — ;H(Xlzn):;ZH(Xk|X1:k—1)_>b:H(X)
k=1

40



Markov Process (Chain)

Discrete-valued stochastic process {x} is
e Independentiff p(x |x,.,-)=p(x,)

° Mal‘kOV Iff p(xn|x0:n—l):p(xn|xn—1)
— time-invariant iff p(x =b|x _,=a) = p_, indep of n
— States

— Transition matrix: T = {¢,,}
e Rowssumto 1: T1 =1 where 1 is a vector of 1's
* p,=T'p,,
e Stationary distribution: ps = T7pq

41
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Stationary Markov Process

If @ Markov process is

: you can go from any state a to any 4 in
a finite number of steps

: V state a, the possible times to go from a
to a have highest common factor = 1

then it has exactly one stationary distribution, py.

~  py is the eigenvector of T7 with 2=1: T'pg =p;
T" — 1p; where 1=[1 1 --- 1]

n—»ao0

— Initial distribution becomes irrelevant (asymptotically
stationary) (T")'p, =ps1'p, =ps, VP,
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Chess Board

H(p,)=3.0827, H(p, | p,)=2.23038

Random Walk

e Move ©{ SAw < equal e (& o
prob

+ p,=[10..0]7 "HN RK
— H(p)) =0

¢ pg=14*x[353585353] o @ | o

— H(pg) = 3.0855
e HX)=lmH(X, |X, )

n—>0

=lim Z_p(’xn X, )Nogp(x, [x, )= Z —ps,t; ; log(t, ;) =2.2365
i,]

n—oo
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Chess Board

Hp,)=0, H(p, | py)=0

Random Walk

e Move & RJAw equal prob ‘

« p,=[10..0]
— H(p)) =0

. p$=1/40><[353585353]T
_ ]—[(p$) = 3.0855

H(X)=lmH(x,|X,,)

n—ao

_ H(X)=22365

= llm Z _p(‘xn ’ xn—l) log p(‘xn | xn—l) = Z _p$>iti’j log(tl’])
I,]
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Chess Board Frames

H(p,)=0, H(p, | py)=0 H(p2)=1.58496, H(p2 | p1)=1.58496 H(p3)=3.10287, H(p3 | p2)=2.54795 H(p,)=2.99553, H(p, | p,)=2.09299

H(p5)=3.111, H(p5 | p4)=2.30177 H(p6)=3.07129, H(p6 | p5)=2.20683 H(p7)=3.09141, H(p7 | p6)=2.24987 H(p8)=3.0827, H(p8 | p7)=2.23038




Summary

e Relative Entropy: D(p||q)=Eplogp(X520
— D(pllg)=0iff p=q 4()
e Corollaries

— Uniform Bound: Uniform p maximizes H(p)

— I(x; y) =2 0 = Conditioning reduces entropy

— Indep bounds: H(xy,)< D H(X,)  H(Xy, |yi,)< D HX |y,
i=1 i=1

I(X15 Y 10) 2 Z[(Xi;yi) if x; or y, areindep
i=1

e Entropy Rate of stochastic process:

— {x;} stationary: HX)=limH (X, | X, )
— {x} stationary Markov:
H(X) = H(Xn | Xn—l) — Z_p&iti,j log(ti,j)

46



Lecture 4

Source Coding Theorem

— n i.i.d. random variables each with entropy H(X) can
be compressed into more than »H(X) bits as » tends
to infinity

Instantaneous Codes

— Symbol-by-symbol coding

— Uniquely decodable

Kraft Inequality

— Constraint on the code length

Optimal Symbol Code lengths
— Entropy Bound

47



Source Coding

e Source Code: Cis a mapping X—D™
— X a random variable of the message
— D* = set of all finite length strings from D
— D is often binary
—e.g. {E, F, G} »{0,1}": C(E)=0, C(F)=10, C(G)=11
e Extension: C*is mapping X* —D* formed by
concatenating C(x;) without punctuation
—e.g. C"(EFEEGE) =01000110

48



Desired Properties

e Non-singular: x,zx, = C(x,) = C(x,)

— Unambiguous description of a single letter of X
e Uniquely Decodable: C* is non-singular

— The sequence C*(x™) is unambiguous

— A stronger condition

— Any encoded string has only one possible source
string producing it

— However, one may have to examine the entire
encoded string to determine even the first source
symbol

— One could use punctuation between two codewords
but inefficient

49



Instantaneous Codes

e Instantaneous (or Prefix) Code
— No codeword is a prefix of another

— Can be decoded instantaneously without reference to
future codewords

e Instantaneous = Uniquely Decodable = Non-
singular

Examples:
- C(E,F,G,H) = (0, 1, 00, 11) =
— C(E,F) = (0, 101) U
- C(E,F)=(1,101) U
— C(E,F,G,H) = (00, 01, 10, 11) U
— C(E,F,G,H) = (0,01, 011, 111) U

50
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Code Tree

Instantaneous code: C(E,~,G,H) = (00, 11, 100, 101)

Form a D-ary tree where D = |D|

— D branches at each node
— Each codeword is a leaf

— Each node along the path to
a leaf is a prefix of the leaf

— can't be a leaf itself
— Some leaves may be unused

111011000000~ FHGEE
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Kraft Inequality (instantaneous codes)

Limit on codeword lengths of instantaneous codes
— Not all codewords can be too short

Codeword lengths /, [,, ..., [y, =

Label each node at depth /

with 27

Each node equals the sum of

all its leaves 1

Equality iff all leaves are utilised

Total code budget = 1
Code 00 uses up 4 of the budget
Code 100 uses up /4 of the budget
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McMillan Inequality (uniquely decodable codes)

If uniquely decodable ¢ has codeword lengths

X
Ly by oy Ly then > D" <1 The same
X =
Let 5= ZD‘ZI' and M =max/; then forany N,
i=1
N (ZX: le ii % —(l‘ +. +.. .+l )
S = D7 — D i1 Ty _ D—length{C+(x)}
i=1 i=l =1 iy=l x§N

NM NM ’1 M
=Y D7 |x:l=length{C"(x)}| < DD L3 {LNRf
=1 o1 =
If S> 1 then S¥> NM for some N. Hence S'< 1.

Implication: uniquely decodable codes doesn’t offer further
reduction of codeword lengths than instantaneous codes
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McMillan Inequality (uniquely decodable codes)

If uniquely decodable ¢ has codeword lengths

X
Ly by oy Ly then > D" <1 The same
X =
Let 5= D™ and M =max/; thenforany N,
i=1

X I 1 (el )
$'=[20 | =333 o)y e
i=1 i=l =1 iy=l xe X"

NM NM NM
=> D' |x:l=length{C*(x)}| <D D'D" =%1=NM
1=1 /=1 /=1
If S> 1 then S¥> NM for some N. Hence S< 1.

Implication: uniquely decodable codes doesn’t offer further
reduction of codeword lengths than instantaneous codes
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How Short are Optimal Codes?

If /(x) = length(C(x)) then C'is if
L=FE I(x) is as small as possible.

We want to minimize ) p(x)/(x) subject to
1. ZD—Z(X) Sl xeX

xeX
2. all the /(x) are integers

Simplified version:
Ignore condition 2 and assume condition 1 is satisfied with equality.



Optimal Codes (non-integer /)

X 1X]

e Minimize 2 p(x), subjectto > D™ =1
i=1 i=1

Use Lagrange multiplier:

| X X oJ
Define J=> p(x),+4) D™ andset o= 0
i=1 i=1 i
(2_}1 =p(x)-AIn(D)D™" =0 = D" = p(x.)/ Aln(D)

X

also > D"=1 = A=UIn(D) = [ =-log,(p(x))

E -log, (p(X)) _ H(x)
log, D log, D

El(x)=E —log, (p(X)) = = Hp,(x)

56



Bounds on Optimal Code Length

Round up optimal code lengths: I =[-log, p(x,)]

« [, are bound to satisfy the Kraft Inequality (since the
optimum lengths do)

e For this choice, —logy(p(x,)) < [, <—logy(p(x)) + 1
e Average shortest length:
H, (X)L <H,(x)+1
e We can do better by encoding blocks of » symbols
n'H, (x )<n El(x, )<n 'H,(x,)+n"
e If entropy rate of x exists (< x; is stationary process)
nH, (x, )>H,(X) = n'Elx,)—>H,X)

Also known as source coding theorem



58

Block Coding Example

1
X=[AB], p,=109;0.1] 08l
H(x,)=0.469 .
(x;) = o6l
Huffman coding: _
Co am oA s A 12

prob 09 01 ,lFp7=1 :
code 0 1

e n=>2 sym AA AB BA BB
prob 0.81 0.09 0.09 0.01 n ' El=0.645
code O 11 100 101

e n=3 sym AAA  AAB .. BBA BBB
prob  0.729 0.081 .. 0.009 0.001 W E 1 =0583
code 0 101 .. 10010 10011

The extra 1 bit inefficiency becomes insignificant for large blocks



Summary

e McMillan Inequality for D-ary codes
e any uniquely decodable C has ZD-’ <1

e Any uniquely decodable code:
El(xX)=H,(X)
e Source coding theorem

e Symbol-by-symbol encoding
H,(X)SEIX)<H,(x)+1

e Block encoding »'El(x,)— H,(X)
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Lecture 5

e Source Coding Algorithms
e Huffman Coding
e Lempel-Ziv Coding
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Huffman Code

An optimal binary instantaneous code must satisfy:
1. p(x)>plx;) = [ <] (else swap codewords)

2. The two longest codewords have the same length
(else chop a bit off the longer codeword)

3. 3 two longest codewords differing only in the last bit
(else chop a bit off all of them)

Huffman Code construction

1. Take the two smallest p(x,) and assign each a
different last bit. Then merge into a single symbol.

2. Repeat step 1 until only one symbol remains
Used in JPEG, MP3...




Huffman Code Example

X=[a,b,c,d,e],p 02502502015015]
a 025 0.45 0.55 1.0
b 025 0.25-0 0.45/— I
C 0.25 0.25
d 015/
e 0.15

Read diagram backwards for codewords:
C(X)=[01 10 11 000 001],L=2.3, H(x)=2.286
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Huffman Code is Optimal Instantaneous Code

Huffman traceback gives codes for progressively larger

alphabets: ;
0.557 1.0
p2=[055 045], 045 1
¢,=[0 1], L,=1

p:=[0.45 0.3 0.25],
¢,=[1 00 01], L;=1.55

p.=[0.30.250.25 0.2],
¢,=[00 01 10 11], L,=2

ps=10.250.25 0.2 0.15 0.15],
¢;=[01 10 11 000 001], Ls=2.3
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Huffman Code is Optimal Instantaneous Code

Huffman traceback gives codes for progressively larger

alphabets: 0
— 10
p,=[0.55 0.45], Z
¢,=[0 1], L,=1

p:=[0.45 0.3 0.25],
¢,=[1 00 01], L;=1.55

p.=[0.30.250.25 0.2],
¢,=[00 01 10 11], L,=2

ps=10.250.25 0.2 0.15 0.15],
¢;=[01 10 11 000 001], Ls=2.3



Huffman Optimality Proof

Suppose one of these codes is sub-optimal:
— 3 m>2 with ¢,, the first sub-optimal code (note c, is definitely
optimal)
— An optimal ¢/ must have L., <L,
— Rearrange the symbols with longest codes in ¢/ so the two

lowest probs p; and p; differ only in the last digit (doesen’t
change optimality)

— Merge x; and x; to create a new code ¢/ | as in Huffman
procedure

— L ¢y =L o,—p;—p; SiNCe identical except 1 bit shorter with prob
pitp;

- Butalso L (-, =L ,,—p,—p; hence L ., < L,—, Which
contradicts assumption that ¢, is the first sub-optimal code

Hence, Huffman coding satisfies H,(x)< L < H,(x)+1
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Shannon-Fano Code

Fano code
Put probabilities in decreasing order
Split as close to 50-50 as possible; repeat with each half

1.
2.

o o o

o

a

= IR )

0.20
0.19
0.17
0.15
0.14

0.06
0.05
0.04

=l o = [O

-

00 H(x)=2.81 bits

010
011
100
101

110
1110
1111

L¢-=2.89 bits
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Shannon versus Huffman

Shannon F= le(Xk), p(X) 2 p(X,) 22 p(X,)
encoding :round the number F, €[0,1] to | —log p(x,) | bits
Hy(xX)<Lg, <H (xX)+1 (excercise)

p, =[036 034 025 0.05] = H(x)=1.78bits
—log,p, =[1.47 1.56 2 4.32]

I, =[—log,p, |=[2 2 2 5]

L, =2.15 bits
Huffman
1,=[1 2 3 3] a  0.36——0.36 0.64% 1.0
' b 034——034" /03671
L =1.94 bits 0 1
Individual codewords may be longer in ¢ 025703
Huffman than Shannon but not the average d  0.05/"!



Issues with Huffman Coding

e Requires the probability distribution of the
source

— Must recompute entire code if any symbol probability
changes
e A block of N symbols needs |[X|" pre-calculated probabilities

e For many practical applications, however, the
underlying probability distribution is unknown

— Estimate the distribution

e Arithmetic coding: extension of Shannon-Fano coding; can
deal with large block lengths

— Without the distribution
e Universal coding: Lempel-Ziv coding

68



Universal Coding

Does not depend on the distribution of the
source

Compression of an individual sequence

Run length coding
— Runs of data are stored (e.g., in fax machines)

Lempel-Ziv coding

— Generalization that takes advantage of runs of strings
of characters (such as )

— Adaptive dictionary compression algorithms

— Asymptotically optimum: achieves the entropy rate
for any stationary ergodic source
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Lempel-Ziv Coding (LZ78)

Memorize previously occurring substrings in the input data

— parse input into the shortest possible distinct ‘phrases’, i.e., each
phrase is the shortest phrase not seen earlier
— number the phrases starting from 1 (0 is the empty string)
ABAABABABBBAB...
1234 567

— each phrase consists of a previously occurring phrase
(head) followed by an additional A or B (tail)

— encoding: give location of head followed by the additional
symbol for tail

O0AOB1A2A4B2B1B...

— decoder uses an identical dictionary
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Lempel-Ziv Example

Input = 1011010100010010001001010010
Dictionary

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

¢
1

0

11

01
010
00

10
0100
01001

Send

1

00
011
101
1000
0100
0010
1010
10001
10010

Decode

1

0

11

01

010

00

10
0100
01001
010010

Remark:

e No need to send the
dictionary (imagine zip
and unzip!)

e Can be reconstructed

e Need to send 0’s in 01,
010 and 001 to avoid
ambiguity (i.e.,
instantaneous code)
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Lempel-Ziv Comments

Dictionary D contains K entries D(0), ..., D(K-1). We need to send M=ceil(log K) bits to
specify a dictionary entry. Initially k=1, D(0)= ¢ = null string and M=ceil(log K) = 0 bits.

Input
1
0

1
1

—

—

Action

“1” ¢D so send “1"” and set D(1)="1". Now k=2 = M=1.

“"0” D so split it up as “¢"+"0” and send location “0” (since D(0)= ¢) followed
by “0”. Then set D(2)="0" making k=3 = M=2.

“1" e D so don’t send anything yet — just read the next input bit.

“11” ¢D so split it up as "1” + “1” and send location “01" (since D(1)="1" and
M=2) followed by “1” Then set D(3)="11" making k=4 = M=2.

“"0” e D so don't send anything yet — just read the next input bit.

“"01” ¢D so split it up as “0” + 1" and send location “10” (since D(2)="0" and
M=2) followed by “1”. Then set D(4)="01" making k=5 = M=3.

“"0” e D so don't send anything yet — just read the next input bit.

“"01” € D so don't send anything yet — just read the next input bit.

"010” ¢D so split it up as "01” + “0” and send location “100” (since D(4)="01"
and M=3) followed by “0”. Then set D(5)="010" making K=6 = M=3.

So far we have sent 1000111011000 where dictionary entry numbers are in red.



Lempel-Ziv Properties

e Simple to implement

o Widely used because of its speed and efficiency
— applications: compress, gzip, GIF, TIFF, modem ...

— variations: LZW (considering last character of the
current phrase as part of the next phrase, used in
Adobe Acrobat), LZ77 (sliding window)

— different dictionary handling, etc

e EXxcellent compression in practice
— many files contain repetitive sequences
— worse than arithmetic coding for text files
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Asymptotic Optimality

o Asymptotically optimum for stationary ergodic
source (i.e. achieves entropy rate)

e Let ¢(n) denote the number of phrases for a
sequence of length »

e Compressed sequence consists of ¢(n) pairs
(location, last bit)

e Needs c(n)[logc(n)+1] bits in total
« {X} stationary ergodic =

limsupn'I(X,,) =limsup c(nllogc(n) +1]

< H(X) with probability 1

1—>00 n—>00 n

— Proof: C&T chapter 12.10
— may only approach this for an enormous file



Summary

e Huffman Coding: H,(x)<EI(x)<H,(x)+1
— Bottom-up design
— Optimal = shortest average length

e Shannon-Fano Coding: H,(x)<EIl(x)<H,(x)+1
— Intuitively natural top-down design

e |Lempel-Ziv Coding

— Does not require probability distribution

— Asymptotically optimum for stationary ergodic source (i.e.

achieves entropy rate)
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Lecture 6

e Markov Chains
— Have a special meaning

— Not to be confused with the standard
definition of Markov chains (which are
sequences of discrete random variables)

e Data Processing Theorem
— You can't create information from nothing

e Fano’s Inequality
— Lower bound for error in estimating X from Y
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Markov Chains

If we have three random variables: x y, z

p(x,y,z)=p(z|x,y)p(y|x)p(x)
they form a X—y—>Zif

p(z|x,y)=pz|y) = p(x,y,2)=p(z|y)p(y|x)p(x)

A Markov chain x— y—z means that
— the only way that x affects zis through the value of y

— if you already know y, then observing x gives you no additional
information about z i.e. I(x;z|y)=0 H(Z|y)=H(Z|X,y)

— if you know y, then observing z gives you no additional
information about x



Data Processing

e Estimate z= f(y), where fis a function
e A special case of a Markov chain x> y > f(y)

Data Y V4
X
—»| Channel —®| Estimator ——»

e Does processing of yincrease the information that y
contains about x?

78



Markov Chain Symmetry

If xopy—>z

p(x,y,2)® p(x,y)p(z] y)
p(y) p(y)

p(x,z|y)= =p(x|y)p(z|y)

Hence x and zare conditionally independent given y

Also x> y—z iff z—»y—xsince
pz|y)p(»)® px,z| ) p(y) _ p(x,y,2)

plx|y)=p(x|y) D(y.72) p(1,2) p(y,z)

= p(x|y,z)

Markov chain property is symmetrical
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Data Processing Theorem

If xoy—szthen I(x;y) > 1(x; 2

— processing y cannot add new information about x
If xoyszthen I(x;p) > I(x; y| 2)

— Knowing zdoes not increase the amount y tells you about x
Proof:

I(x;y,2)=1(x;y)+1(x;Z2|y)=1(x;2)+1(X; ) | Z)

(a)
but I(x;z|y)=0

hence I(x;y)=I1(x;2)+1(x;y|2)
so I(x;y)=21(x;z) and I(x;y)=1(Xx;y|2)



So Why Processing?

One can not create information by manipulating
the data

But no information is lost if equality holds

Sufficient statistic
— z contains all the information in y about x
— Preserves mutual information I(x ;) = I(x; 2)

The estimator should be designed in a way such
that it outputs sufficient statistics

Can the estimation be arbitrarily accurate?
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Fano’s Inequality

If we estimate x from y, whatis p.=p(x=x) ?

H(x|y)<H(p,)+ p,log|X]

» >(H(X|y)—H(Pe))(;)(H(X|y)—1)
° log | X| -~ log|X|

_ _ 1l XX
Proof: Define a random variable 6={ .
0 X=X
He,x|x)=H(x|X)+H(e|x,x)=H(e|x)+H(x|e,X)
— H(x | X)+0< H(e)+ H(x|e,x)
=H(e)+H(X|)?,e=0)(1—pe)+H(X|)?,e=1)pe
<H(p,)+0x(1-p,)+p, log|X]|

H(x|y)<H(x|X) since I(X;X)<I(x;))



Implications

Zero probability of error p,=0=H(x|)y)=0

Low probability of error if H(x]y) is small

If H(x|y) is large then the probability of error is

high

Could be slightly strengthened to
H(x|y)<H(p,)+p,log(|X[-1)

Fano’s inequality is used whenever you need to

show that errors are inevitable

— E.g., Converse to channel coding theorem
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Fano Example

X ={1:5}, p,= [0.35,0.35,0.1, 0.1, 0.1]7
Y = {1:2} if x<2 then y=xwith probability 6/7
while if x>2 then y=1 or 2 with equal prob.
Our best strategy istoquess x=y (x> y —> x)
~ Pyiy=1 = [0.6,0.1,0.1,0.1,0.1]7
— actual error prob: p,=0.4

Hx|y)-1 1.771-1

: pe 2 — — 03855 I
Fano bound og( X|=1)  log(@) (exercise)




Summary

e Markov: x> y-ozopiz|lx,y)=pz|y)<I(x:2|y)=0

e Data Processing Theorem: if x—y—zthen
— IXx;N21(x;2,1(y;2=21(X;2)
- Ix; N=21x;)|2
— Long Markov chains: If x— X, — X, — X, —> X — X
then Mutual Information increases as you get closer
together:
* e.9. 10X, X,) 2 10X, X,) 2 10X, X5) 2 1, X;)
e Fano’s Inequality: if x > ¥ — x then
Hx|y)-H(p,)  HX|y)-1_HX|y)-1
log( X|-1)  log(| X|-1) ~ log|X|

P, 2
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Lecture 7/

e Law of Large Numbers
— Sample mean is close to expected value

e Asymptotic Equipartition Principle (AEP)
— -logP(xy,X%,...,x,)/n is close to entropy H

e The Typical Set
— Probability of each sequence close to 27
— Size (~2"H) and total probability (~1)

e The Atypical Set
— Unimportant and could be ignored



Typicality: Example

X ={a, b, c, d}, p=[0.50.250.1250.125]
—logp=[1233] = H(p)=1.75 bits

Sample eight i.i.d. values

o typical = correct proportions

adbabaac -log p(x) = 14 = 8x1.75 = nH(X)
e not typical = log p(x) # nH(X)

dddddddd —log p(x) = 24
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Convergence of Random Variables

e Convergence
X, >y = Ve>0,dmsuchthatVan>m,| X -V |<e¢

n—o0

Example: X, =32"", }y =0

choose m =—loge

e Convergence in probability (weaker than convergence)

prob
X, >y = V&>, P(|Xn—y|>g)—>0

x,€{0;1}, p =[1—n_1; n_l]

for any small ¢ , p(| x, [> &) =n"' —22>0

Example:

prob

sox, >0 (butx, ~>0)
Note: y can be a constant or another random variable



Law of Large Numbers
Given i.i.d. {x}, sample mean s :lzn:xi

— ES =EX=u Vars, =n"'Var X =n"'c’

As n increases, Var s, gets smaller and the values

become clustered around the mean
prob

S > u
& Ve>0, P(s,—ups)—0

n—o

The expected value of a random variable is equal
to the long-term average when sampling
repeatedly.
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Asymptotic Equipartition Principle

e X is the i.i.d. sequence {x;} for1<i<n
— Prob of a particular sequence is »00=] ] p(x)
i=1
— Average £ —log p(X) =n E —log p(x;) = nH (X)

o AEP:

1

prob
——log p(X) > H(X)
n

e Proof:
1

n

1 n
log p(X) = —;Zlog p(x;)
i=1

prob
> E-logp(x)=H(x)
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Typical Set

(for finite n)

T = {X e X" :‘— n' logp(x)—H(X)‘ < 5}

Example:
— x. Bernoulli with p(x;=1)=p
—eg p([011000])=p*(1-p)*
— For p=0.2, H(X)=0.72 bits
— Red bar shows 7, ,

N=128, p=0.2, e=0.1, p;=85%

-2.5

2 15 1 -05
Nlog p(x)




Typical Set Frames

N=1, p=0.2, €=0.1, p;=0% N=2, p=0.2, e=0.1, p,=0% N=4, p=0.2, €=0.1, p,=41% N=8, p=0.2, e=0.1, p,=29%

|

25 2 45 4 205 0 25 2 45 4 05 0 25 2 45 1 05 0 25 2 45 4 05 0

N’ log p(x) N’ log p(x) N’ log p(x) N’ log p(x)
N=16, p=0.2, €=0.1, p;=45% N=32, p=0.2, €=0.1, p;=62% N=64, p=0.2, €=0.1, p;=72% N=128, p=0.2, €=0.1, p,=85%

-2.5 -2 -1.5 -1 -0.5 0 -2.5 -2 -1.5 -1 -0.5 0 -2.5 —é -1.5 -1 -0.5 0 -2.5 -.2 -1..5 -1 -0.5 0
N’ log p(x) N'1Iog p(x) N’ log p(x) N'1Iog p(x)

00020Q DA DA0HENNO) DIOOD 1) OHOAHO0) BDOOOO0 10000,
0000100001000000, 0000000010000000
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Typical Set: Properties

PFOOf 2: _n—l logp(x) — n_lzn:_logp(xi) Iﬁ: E —logp(xl-) = H(X)

i=1

Hence Ve > 03N, s.t.Va> N, p(‘— n”" log p(X) —H(X)‘ >eg)< &

Proof 3a: flen, l—&<p(Xe Tg(n)) < Zz—n(H(X)—g) _ y-n(H(X)=¢)

xeT()

Proof 3b: 1= Z p(X) > Z p(X) > 22 n(H(X)+e) _ n=n(H(X)+e)

XGT( ") XeT

Tg(n)

Tg(n)
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Consequence

“Almost all events are almost equally surprising”

o P(XeT")>1-& and  logp(X) = —nH(X)tne

X" elements

Coding consequence
— xeT"™ :'0" + at most 1+n(H+¢) bits
- xeT" ‘1" 4+ at most 1+nlogX| bits
— L = Average code length
< p(XeT")[2+n(H+¢)]
+p(X g T")[2+nlog| X|]
Sn(H+g)+g(nlog‘XD+25+2

< 2"+ alements
= n(H+g+glog‘X‘+2(g+2)n_l) =n(H+¢")



Source Coding & Data Compression

For any choice of ¢ > 0, we can, by choosing block
size, n, large enough, do the following:

e make a lossless code using only H(x)+¢& bits per symbol
on average:

££H+g

n
e The coding is one-to-one and decodable
— However impractical due to exponential complexity

e Typical sequences have short descriptions of length ~ nH

- AnotP)er proof of source coding theorem (Shannon’s original
proo

e However, encoding/decoding complexity is exponential
in n
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Smallest high-probability Set

7. is a small subset of X" containing most of the
probability mass. Can you get even smaller ?

For any 0 < &< 1, choose N, =-¢&"log &, then for any
n>max(N,,N,) and any subset S* satisfying |s®| < pn®#x)-2¢)

plces)= plees® ) plees T

< ‘S(”) max p(X) + p(x € Tg(”))
xel,"

< A= I=E) 4 o forn>N,

=2 +g<2¢ forn>N, 27" <2 =g

Answer: No



Summary

e Typical Set
— Individual Prob  XeZ” = logp(X) = —nH(X)*ne
— Total Prob p(xeT")>1-g for n>N,
— Size (1= £)2" 7000 v ‘Tg(n)‘ < n(H(x)2)

e No other high probability set can be much
smaller than 7"
o Asymptotic Equipartition Principle
— Almost all event sequences are equally surprising
e Can be used to prove source coding theorem
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Lecture 8

e Channel Coding
e Channel Capacity

— The highest rate in bits per channel use that can be
transmitted reliably

— The maximum mutual information

o Discrete Memoryless Channels
— Symmetric Channels

— Channel capacity
e Binary Symmetric Channel
e Binary Erasure Channel
e Asymmetric Channel
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Model of Digital Communication

Source Coding
l l7Channel Coding—l l
In Noisy Out
—» Compress | Encode —» Channel —» Decode —» Decompress —»

e Source Coding
— Compresses the data to remove redundancy

e Channel Coding

— Adds redundancy/structure to protect against
channel errors
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Discrete Memoryless Channel

Input: xeX, Output yeY

X Noisy | V¥V
Channel

Time-Invariant Transition-Probability Matrix

(Qy|)()l-’j :p(y:yj |X:xi)

T
— Hence p,=Q,,p,
— Q: each row sum = 1, average column sum = |X|Y|!

Memoryless: p(y,1X.. Vi1) = P(V,IX,)
DMC = Discrete Memoryless Channel
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Binary Channels

e Binary Symmetric Channel (l—f f] XO g: Oy
—X=[01],Y=[01] ;o 1

e Binary Erasure Channel (l—f 7 oj o 2y
—X=[01],Y=[021] 0 f 1-f |
1 1
e Z Channel .0 00— 0
- X=[01],Y=[01] (f l—f] XILIIV

Symmetric:
Weakly Symmetric:
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Weakly Symmetric Channels

Weakly Symmetric:

- If xis uniform (i.e. p(x) = [X|"!) then yis uniform
PN =Y p|0)p@) =X prx)=X" XY =|Y|"
xeX

xeX

- Each row of Q has the same entropy so

H(y |X)=2 p()H(y|x=x)=H(Q,)) p(x)=H(Q,)

xeX xeX

where Q, . is the entropy of the first (or any other) row of the Q matrix

Symmetric:

Symmetric = weakly symmetric
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Channel Capacity

o Capacity of a DMC channel: ¢ =maxi(x;y)

— Mutual information (not entropy itself) is what could be
transmitted through the channel

— Limits on C:
0<C <min(H(x), H(y)) < min jggf

o Capacity for n uses of channel:

1
C(”) = — max ](Xl;n;yl:n)
n Px,
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Mutual Information Plot

1 0 » ()
P
1(X;Y)
x N<T
| |

o
SIS
S SN\
Lo \ SR \

10 Channel Error Prob (f)

Input Bernoulli Prob (p)
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Mutual Information Concave in p,

Mutual Information /(x;)) is concave in p, for fixed p,,

Proof: Let v and v have prob mass vectors p, and p,
— Define z bernoulli random variable with p(1) =1
- lLetx=vif 1 and x=vif 20 = p,= A p, t(1-4) p,

(X, z,y)=1(X; )+ [(Z;y | X)=1(Z; )+ 1(X; ) | Z)
but I(z;y|xX)=HWY|Xx)-H(y|x,2)=0 so
. (X y)z1(x;y|2)
D= Tow =Gy | 2=D+1-DI(x;y|Z=0)
(z)y— =MW y)+A=DIV;y)
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Mutual Information Convex in py,

Mutual Information /(x ;) is convex in p,, for fixed p,

Proof: define u, v, x etc: p(UX) ,
— Pyx = ﬂ‘pu|x +(1_ﬂ‘)pv|x \|\>@

I(x;y,2)=1(x;y|2)+1(X;2) p(w;% Oi
=10GY)+1(x;Z2]y) (2)—

but /(x;2)=0 and I(x;Z]|y)=0so0
I(X;y)<1(X;y | 2)
=My |Z=)+A-N)I(x;y|2=0)
=Al(X;u)+(1-A)I[(Xx;V)
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n-use Channel Capacity

For Discrete Memoryless Channel:
](Xlzn;ylzn) — H(ylzn)_H(ylzn | Xl:n)

=D HW | Vi) =2 HY, 1 X)
i=1 i=l

SiH(yi)_iH(yi |Xi)=i](xi;yi)

with equality if y; are independent = x are independent
We can maximize /(X;y) by maximizing each I(x;))
independently and taking x: to be i.i.d.

— We will concentrate on maximizing I(x; y) for a single channel use
— The elements of X, are not necessarily i.i.d.
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Capacity of Symmetric Channel

If channel is weakly symmetric:

[(x;y)=H(y)-H(y|X)=H(y)-H(Q,)<log|Y|-H(Q)

. Information Capacity of a WS channel is C = log|Y|—H(Q10.) 1-f

0
For a binary symmetric channel (BSC): X Iy
- |Y[=2 1 1

o H(Ql,:) :H(f)
— Iy <1-H(f)

. Information Capacity of a BSC is 1-H(f)




09

Binary Erasure Channel (BEC)

1-f
I—f f 0 0 0
0 f 1-f X ry
A
I y)=H(X)-H(X|y) !
= H(X) = p(y =0)x0= p(y =DH(X) = p(y =1)x0
=HX)-H(X)f H(x |y) = 0 when y=0 or y=1
= (1- f)H(x)
<l-f since max value of H(x) =1
C=1-f with equality when x is uniform

since a fraction f of the bits are lost, the capacity is only 1-f
and this is achieved when x is uniform
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Asymmetric Channel Capacity

]‘_f 0\

Let py=1[a a 1-2a]" = p,~Q'p,= py (0:a :
H(y)=-2aloga—(1-2a)log(1-2a) 4 Eg: L
H(y | X)=2aH(f)+(1-2a)H(1)=2aH(f) ¢ =

(2:12¢ ——»2

To find C, maximize I(x;)) = H(y) — H(y | X)

[ =-2aloga—(1-2a)log(l-2a)-2aH(f) -f £ 0
%:—2loge—2loga+210ge+210g(l—2a)—2H(f):0 Q[ J
a

1720 jogla—2)=H(f) = a=[+270)'

log
= C=-2a log(aZH(f))— (1-2a)log(1-2a) = —log(1-2a)

Examples: f=0=H()=0=a="/;= C=1og 3 =1.585 bits/use
f=%=H(f)=1=a=%= C=log2=1 bits/use
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Summary

e Given the channel, mutual information is
concave in input distribution

e Channel capacity C= max[()( ¥)
— The maximum exists and is unique

e DMC capacity
— Weakly symmetric channel: log|Y|-H(Q, .)
— BSC: 1-H(f)
- BEC: 1-f
— In general it very hard to obtain closed-form;
numerical method using convex optimization instead
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Lecture 9

e Jointly Typical Sets
e Joint AEP

e Channel Coding Theorem

— Ultimate limit on information transmission is
channel capacity

— The central and most successful story of
information theory

— Random Coding
— Jointly typical decoding
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Intuition on the Ultimate Limit

QnH(Y
< ¥

e Consider blocks of n symbols: 2/

JnH()

X . i .
Lin Noisy | Y
Channel

— For large »n, an average input sequence x,., corresponds to about
2"HY typical output sequences

— There are a total of 2"#® typical output sequences

— For nearly error free transmission, we select a number of input
sequences whose corresponding sets of output sequences hardly
overlap

— The maximum number of distinct sets of output sequences is
Yn(H(W-H(WX) = Jnl(y ;:X)

— One can send [ y;x) bits per channel use
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Jointly Typical Set

X,y is the i.i.d. sequence {x,y;} for 1 <i< n

— Prob of a particular sequence is  p(X,Y) = HP(X ¥,

— E-logp(X,¥Y)=nE -logp(x,,y;)=nH(X, J/)

J = {x y e XY :|-n"log p(X)— H(X)| < ¢,

-n"'log p(Y)-H(y)| <,
—n"" log p(X,Y)~ H(X,y)| < &}
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Jointly Typical Example

-/

Binary Symmetric Channel 0 > 0
=02 p,=(0.75 025) X::>ng y
Py =D 02200 By =005 02 =7

Jointly typical example (for any ¢):
x=11111000000000000000
y=11110111000000000000
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Jointly Typical Diagram

Each point defines both an x sequence and a y sequence

Dots represent

2n10g|Y| o :
A h > jointly typical
- il . | Pairs (x,y)
#| Typical in x or y: 2"HXHOD a3
god "::5:5‘5::" Inner rectangle
2riogl | {2 A RO R e represents pairs
\\SQ.\.C;:?E::" 4_221{(;4)() that are typical
36\0\?}::5“" in X or y but not
iz necessarily
v |All sequences: 2"oeXIYD jointly typical

There are about 2% typical x’s in all
Each typical y is jointly typical with about 277 of these typical x's
The jointly typical pairs are a fraction 2/*:» of the inner rectangle
Channel Code: choose x’s whose J.T. y’s don't overlap; use J.T. for decoding
There are 2"*:» such codewords x’s
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Joint Typical Set Properties

1. Indiv Prob: x,yeJ” = logp(X,y)=-nH(X,y)tne
2. Total Prob: p(x,y ng”))>1—g for n>N,
3. Size: (1 eyp o= "° 7] < g

Proof 2: (use weak law of large numbers)

Choose N, such that Vi > N,, pQ— n” log p(X)— H (x)‘ > g)< g

Similarly choose N,, N, for other conditions and set N, = maX(Nl,Nz,N3)

Proof 3: 1-e< ) p(x,y)< max p(X,y) = H 1)
x,yeJ " X.,yeJ\
1> ZP(X Y) > J(n) mln p(x Y) J(n) —n(H(x,y)+e)

x,yeJ "
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Properties

4. If p,~p, and p,=p,with X and )/ independent:
Px—Px y Py
(1- )2 1ne) < plx y'e J™ )< 20X for > N

Proof: |J| x (Min Prob) < Total Prob < |J| x (Max Prob)
plx,y'es)= Y pxy)= Y pOx)p(y)

xyeJ() xyeJ()

<" max p(x)p(y')

x\y'eJ}

< 2n(H(X y)+e)2 n(H(X)—S)z—n(H(y)—g) _ 2—n(1(X y)-3¢)
p(x',y'e Jj”))z

> (1—g)27"Ux¥)%3¢) for p> N

plx,y'e )<

min - p(X') p(Y')

x\y'eJ!




Channel Coding

we 1:M
—— »| Encoder

X
—>

Assume Discrete Memoryless C

An (M, n) code is

Noisy
Channel

Nin
—>

Decoder
g(y)

nannel with known Q,,,

— A fixed set of M codewords x(w)eX” for w=1:M

— A deterministic decoder g(y)el:M

The rate of an (M,n) code: R=(log M)/n bits/transmission
Error probability 4, =p(g(y(w))=w)= > p(»1x()J,..

yeY”

— Maximum Error Probability A" = max 4,

1<wM

M
— Average Error probability  p™ =iZzw
M w=I

119
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Shannon’s ideas

e Channel coding theorem: the basic theorem of
information theory

— Proved in his original 1948 paper
e How do you correct all errors?
e Shannon’s ideas

— Allowing arbitrarily small but nonzero error probability

— Using the channel many times in succession so that
AEP holds

— Consider a randomly chosen code and show the
expected average error probability is small
e Use the idea of typical sequences

e Show this means 3 at least one code with small max error
prob

e Sadly it doesn't tell you how to construct the code



Channel Coding Theorem

o A rate R is achievable if R<C and not achievable if R>C
— If R<C, 3 a sequence of (2% n) codes with max prob of error

AM—0 as n—oo

— Any sequence of (2%,n) codes with max prob of error AW—0 as

n—oo must have R< C

A very counterintuitive result:

Despite channel errors you can
get arbitrarily low bit error
rates provided that R<C

0.2

o
-
(&)}

o
o
a

Bit error probability
o

(=]
o

Achievable

Impossible

1 2 3
Rate R/C

121




Summary

e Jointly typical set

~log p(X,Y)=nH(X,y)*ne
p(x,yes”)>1-¢

(n) n(H(X,y)+¢)
J"| <2

(1_8)2—n(1(X,y)+38) Sp(X',Y'EJi”))S 2—n(1()(,y)—3g)

e Machinery to prove channel coding
theorem

122
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Lecture 10

e Channel Coding Theorem

— Proof
e Using joint typicality

e Arguably the simplest one among many possible
ways
e Limitation: does not reveal P, ~ e"#(®)

— Converse (next lecture)
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Channel Coding Principle

e Consider blocks of n symbols: . 21O
¥

JnH()

Xl:n Noisy yl:n
— B
Channel

— An average input sequence x,., corresponds to about
2mHY typical output sequences

— Random Codes: Choose M = 2"k (| R<I(x; y) ) random
codewords x(w)

e their typical output sequences are unlikely to overlap much.

— Joint Typical Decoding: A received vector y is very
likely to be in the typical output set of the transmitted
x(w) and no others. Decode as this w.
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Random (27%,n) Code

e Choose ¢ =~ error prob, joint typicality = N, , choose n>N,
e Choose p, so that I(x;p)=C, the information capacity

e Use p, to choose a code C with random x(w)eX”, w=1:2"%
— the receiver knows this code and also the transition matrix Q

e Assume the message Wel:2"® is uniformly distributed

e If received value is y; decode the message by seeing how many
x(w)’s are jointly typical with y
— if x(k) is the only one then £ is the decoded message
— if there are 0 or >2 possible ks then declare an error message 0

— we calculate error probability averaged over all C and all w
(a)

p(E)=Y p(C)Z‘”Rzz:/IW(C) - 2“%2 p(OA (C)= D p(OIA4(C)=p(E|w=1)

w=l C
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Decoding Errors

e Assume we transmit x(1) and receive y
o Define the J.T. events e, ={(x(w),y)eJ{"}| for wel:2"

send x(1) e, true — very likely

)(l:n Noisy yl:n ¥

Channel

eine; true — unlikely €2 true — unlikely

e Decode using joint typicality
e We have an error if either g, false or e, true for w> 2

e The x(w) for w # 1 are independent of x(1) and hence also
independent of y. So p(e, true) < 27"V* )73 forany w1
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Error Probability for Random Code

e Upper bound
p(E)zp(E|W=1)=p(glu&'2 U €, u---uean)Sp(a)+Zp(ew)

w=2

2nR
< g_l_Zz—n(f(X;y)—%) < €+2nR2_n(](X;y)_38)
i=2
<g+2"F3) <oe for R<C-3¢andn>— log £
C—-R-3¢

e Since average of P(E)over all codes is < 2¢ there must be at least
one code for which this is true: this code has 2‘”RZAW <2¢

e Now throw away the worst half of the codewords; the remaining
ones must all have 1, < 4&. The resultant code has rate R—n'= R.
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Code Selection & Expurgation

Since average of P(FE)over all codes is < 2¢ there must be at least
one code for which this is true.

Proof:

ej =

K K
26> K YR > K1Y minlp) )= minlr
i=1 i=1

K = num of codes

Expurgation: Throw away the worst half of the codewords; the
remaining ones must all have 4 < 4e.

Proof: Assume A  are in descending order

M UM YoM
e > M_lz/lw > M_lz/lw > M_lzﬁ%M 2 V2l
w=1 w=1 w=1

= Ay <de = 4,54 Vw>LM

M'=Y%x2"®messages innchannel uses = R'=n"'logM'=R-n""
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Summary of Procedure

e For any R<C -3¢ set n=max|N,, - (loge) (C—R—3e), &' |

e Find the optimum p, so that /(x; y)=C

e Choosing codewords randomly (using p,) to construct codes with 2%
codewords and using joint typicality as the decoder

e Since average of P(E)over all codes is < 2¢ there must be at least
one code for which this is true.

e Throw away the worst half of the codewords. Now the worst
codeword has an error prob <4¢ withrate=R-n'>R —¢

e The resultant code transmits at a rate as close to C as desired with
an error probability that can be made as small as desired (but »
unnecessarily large).



Remarks

Random coding is a powerful method of proof,
not a method of signaling

Picking randomly will give a good code
But » has to be large (AEP)

Without a structure, it is difficult to
encode/decode

— Table lookup requires exponential size

Channel coding theorem does not provide a
practical coding scheme
Folk theorem (but outdated now):

— Almost all codes are good, except those we can think
of

130



Lecture 11

e Converse of Channel Coding Theorem

— Cannot achieve R>C
e Capacity with feedback

— No gain for DMC but simpler encoding/

decoding

e Joint Source-Channel Coding
— No point for a DMC

wel:2"™
—>

Encoder

Noisy
Channel

A
we(:2"™

Vin

Decoder
a(y)

131
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Converse of Coding Theorem

e Fano’s Inequality: if P, is error prob when estimating w fromy,
Hw|y) <1+ P" log|W|=1+nRP"

e Hence nR=HW)=HW|y)+I(Ww.Y)
<SHWI]Y)+1I(X(W),Y)
<1+nRP™ +I(X;Y)

<1+nRP"™ +nC

-1
:>Pe(”)2R Con o, 1_S.0if R>C
R n—>»0 R

e For large (hence for all) »n, P,® has a lower bound of (R—C)/R if w
equiprobable

— If achievable for small », it could be achieved also for large n by

concatenation. X
wel:2™ Xin [ Noisy | V1= [ Decoder| W €0:2"
——» Encoder —» —— —p
Channel g(y)
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Minimum Bit-Error Rate

m:nR )q:n Noisy J/lzn M’f: nR
—»| Encoder—» Channel__> Decoder————»

Suppose
— W, is i.i.d. bits with H(w)=1 .
~ The bit-error rate is B, = E{p(w, =W,)}=E{p(e)}

(a)

(b) . n
Then nC 2 I(X1n9yln) 2[(M/l 'Wl:nR):H(WI:nR)_H(Wl:nR |W1:nR)

‘nR >

:”R_iH(Wi |W1:nR9W1:i—1)(£)nR_§H(Wi |W,) :nR(l_l;{H(M/i |MA/1)})
S R (1= £ (118,19} )2 nR(1 - E{t(e)}) nR (1~ H(E Pl ) =nR1-H(R)

0.2

Hence
R<C(-H(PR))" v
B>H'(1-C/R) ™"

0
0 1

2
Rate R/C



Coding Theory and Practice

Construction for good codes

— Ever since Sha

nnon founded information theory

— Practical: Computation & memory oc n* for some &
Repetition code: rate > 0
Block codes: encode a block at a time

— Hamming code:
— Reed-Solomon co

Convolutional coc
Concatenated coc

orrect one error
de, BCH code: multiple errors (1950s)

e: convolve bit stream with a filter
e: RS + convolutional

Capacity-approac

— Turbo code: combination of two interleaved convolutional codes

(1993)

nNing codes:

— Low-density parity-check (LDPC) code (1960)

— Dream has come

true for some channels today

134
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Channel with Feedback

X - Y, w
Encoder —» Noisy » Decoder —»

Nia[ ™ Channel

e Assume error-free feedback: does it increase capacity ?

e A (2"R n) feedback code is
— A sequence of mappings x,= x(w,y,., ;) for i=1:n
— A decoding function W =g(y,,)

e Arate R is achievable if 3 a sequence of (2"%,n) feedback
codes such that A" =PW #w)———0

e Feedback capacity, C.;> C, is the sup of achievable rates
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Feedback Doesn’t Increase Capacity

wel:2"R _ A
[(W; Y) — H(Y)n_ H(y | W) y”_l’—> Encoder L Cﬁgfgel yi» Decoder —W>

=H(V)—Z,H(J/,- [ Vi1 W)

:H(y)—iH(y,- | Vi W X;)

- H(v>—i1H<yi X))

< Zn:H(yl.)—Zn:H(yi | X)) = ZH:I(XZ.;yl.) <nC
Hence N B :

nR=HW)=HW|Yy)+Iw;y) <1+nRP"™ +nC

R-C-n"'
R

=P > = Any rate > C is unachievable

The DMC does not benefit from feedback: C,, = C
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Example: BEC with feedback

Capacity is 1 —f N
Encode algorithm

— If y,=7, tell the sender to retransmit bit i ¥ . vy
— Average number of transmissions per bit: i = |

1_|_f_|_f2_|_...:L

1-f
Average number of successfully recovered bits per
transmission = 1 —f
— Capacity is achieved!
Capacity unchanged but encoding/decoding algorithm
much simpler.
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Joint Source-Channel Coding

w. X,. Noi Y.
1:n l:n oI1sy l:n .
——» Encoder ——» Channel —— Decoder ——»

S >

e Assume w; satisfies AEP and |W|<w
— Examples: i.i.d.; Markov; stationary ergodic

e (Capacity of DMC channel is C
— if time-varying: C =limn '1(X;Y)

n—»0

e Joint Source-Channel Coding Theorem:
3 codes with P =Pw,, #w,,)———0 iff HW)<C
— errors arise from two reasons
e Incorrect encoding of w
e Incorrect decoding of y
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Source-Channel Proof (<)

Achievability is proved by using two-stage
encoding

— Source coding

— Channel coding

For n > N_there are only 2"¢W)+9 w's in the
typical set: encode using n(H(W)+e¢) bits

— encoder error < ¢

Transmit with error prob less than ¢ so long as
HWyt e<C

Total error prob <2¢



Source-Channel Proof (=)

Wi

—>

Encoder

X

—P>

Noisy
Channel

Vi
—>

Decoder

Fano’s Inequality: H(w|W)<1+P"nlog|W|

HW)<n ' Hw,,)

=n'H(W,

n|W1

—1 oA
:n)+n ](len’len)

<n’! (1 + Pe(n)n log‘W‘) + n_ll(Xl;n;ylzn)
<n”'+P" log|W|+C

let n—>0w0 = P” >0 = HW)<C

S >

140



Separation Theorem

Important result: source coding and channel coding
might as well be done separately since same capacity
— Joint design is more difficult

Practical implication: for a DMC we can design the
source encoder and the channel coder separately
— Source coding: efficient compression

— Channel coding: powerful error-correction codes

— Correlated channels
— Multiuser channels

Joint source-channel coding: still an area of research
— Redundancy in human languages helps in a noisy environment

141
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Summary

e Converse to channel coding theorem
— Proved using Fano’s inequality
— Capacity is a clear dividing point:
e If R < C, error prob. > 0
e Otherwise, error prob. > 1
e Feedback doesn’t increase the capacity of DMC
— May increase the capacity of memory channels (e.g.,
ARQ in TCP/IP)
e Source-channel separation theorem for DMC and
stationary sources
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Lecture 12

e Polar codes
— Channel polarization
— How to construct polar codes
— Encoding and decoding

e Polar source coding
e Extension



About Polar Codes

e Provably capacity-achieving

e Encoding complexity O(N log N)

e Successive decoding complexity
O(NlogN)

e Probability of error ~ 2=VN

e Main idea: channel polarization
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What Is Channel Polarization?

e Normal channel e Extreme channel
Useless
channel

Polarizati0|>
sometimes cute, Perfect
sometimes lazy, channel

hard to manage
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Channel Polarization

e Among all channels, there are two classes
which are easy to communicate optimally

— The perfect channels

the output Y determines the input X
— The useless channels

Y is independent of X

e Polarization is a technique to convert noisy
channels to a mixture of extreme channels

— The process is information-conserving



Generator Matrix

e Generator Matrix

1 0%

®n denotes the r-fold Kronecker product.

e Example

1 o _[F2 O
FZ_[1 1], F, = F, FJ and so on.

e Encoding

Let u be the length-N input to the encoder, then

x = uFy is the codeword.

147
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Channel Combining and Splitting

e Basic operatlon (N = 2)

W Ul—(Y1, Y2) w+: U2—(Y1, Y2, U1)
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What Happens?

e Suppose W is a BEC(p), i.e., Y=X with probability
1 — p, and Y="? (erasure) with probability p.
- W~ has input U1l and output (Y1, Y2)=(U1+U2, U2) or
(?, U2) or (U1+U2, ?) or (2, ?).
- W~ is a BEC(2p — p?)
- W™ has input U2 and output (Y1, Y2, U1)=(U1+U2,
U2, Ul) or (?, U2, Ul) or (U1+U2, ?, U1) or (?, ?, Ul).
- W™ is a BEC(p?)
e W™ is worse than W, and W™ is better (recall
capacity C(W)=1 — p).
- C(WHY+cWh) =2c(w)
- c(WHYscw) scwh



Example: BEC(0.5)

e |W/is a BEC with erasure probability p = 0.5.

1-p

0 >0
\ Y
l1—p p 0
2
1 >1

1-p

o If we use two coples of W separately

2CW)=2%0.5=1

_________________________________



Example: BEC(0.5)

e Channel combining and splitting




Example: BEC(0.5)

152

e Channel W~
Ul W 1! ) 1
VIR LW =Y o) =4x—log2 =025
(Y1,Y2) Transitional probabilities
00 0? 01 20 27 ?1 10 1? 11
0 1/8 | 1/8 0 1/8 | 1/4 | 1/8 0 1/8 | 1/8
Ul
1 0 1/8 | 1/8 | 1/8 | 1/4 | 1/8 | 1/8 | 1/8 0
& & & &



Example: BEC(0.5)

e Channel W+

U2

CW*)=12x—log?2 =0.75

1
16
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W_— Y1 CWH+CWH)=2C(W)
W =yl (WY <CW)< CW)
__________________________________ (Y1,Y2,U1) Transitional probabilities
000 | 0?0 | 010 | 200 | 2?20 | 210 | 100 | 1?0 | 110
1/8 | 1/8 0 1/8 | 1/8 0 0 0 0
0‘ 0‘ 0 0‘ 1/8 1/8 0 1/8 1/8
7 & ¢ 7 <
001 (0”1 | 011 | 201 | 221 | 211 | 101 | 121 | 111
0 0 0 1/8 | 1/8 0 1/8 | 1/8 0
1/§ 1/§ O,, 1/8 1/§ O,, 0, 0
v & ¥ ¢ & ¥



Repeating this, we obtain A'bit channels’ at the n+th step.

More conveniently, this process can be described as a binary tree.
—Note how the 'bit channels’ W, p, ...,

More Polarization

are labelled in the tree.

|
l

W = Waeo

W

T"i':et[ = Woo
Wi = Wan

wil =wy

WE ) R—
W™ = W

Wi = W
Wi = W

Wi = Wigo

W™ = Wi

Wi =w,

Wit = Wi

Wi = W,
Wi = Wi,

—=i}

ﬂ FT

—0

=}

—
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Martingale

Now pick a 'bit channel’ uniformly at random on the r+th
level of the tree, which is equivalent to a random
traverse on the tree, namely, at each step the r.v 5,
takes the value of 0 or 1 with equal probability.

We claim capacity C, at the n-th step is a martingale.
Proof: By information-preserving

1 1
E[Cps1lby, o bp] = 5C(Wy. b, .b.0) +5C(Wh,b,.b,1)
2 2

= C(Wp,p,..b,) = Cn
By the martingale convergence theorem, C, converges
to a random variable C_such that E[C.] = E[Cy] = C, =
cC(W).
In fact, the limit C_= 0 or 1 is a binary random variable
(these are the fixed points of the polar transform).
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Review of Martingales

e Let {X,n>0} be arandom process. If
E[Xn+1|X‘ru ""Xl'XO] — Xn
then {X } is referred to as a martingale.

e Martingale convergence theorem: Let {X ,
n >0} be a martingale with finite means.
Then there exists a random variable X,
such that

X, - X, almost surely
dS n — oo,



How to construct polar codes

e To achieve C(IW), we need to identify the
indices of those bit channels (branches in
tree) with capacity ~ 1.

e For BEC, this can be computed recursively
C(Whp,p,.5,0) = C(Wh,b,..p, )
C(Wp,p,.0,1) =2C(Wy. 5. b ) = C(Wp,b, .1, )?

e For other types of channels, it is difficult

to obtain closed-form formulas. So
numerical computation is often used.
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Polarization Speed

e For any positive real number g < 0.5,
.1 _NB
lim N# {(bl bn): C(Wblbz...bn)ZJ* — 2 N }

Nn—oo
- c(w).

lim £ # {01+ b): C(Wh,.0,) < 1= 27
=1-CcW).

e The above statements do not hold for g > 0.5.
e Thus, the polarization speed is roughly 2=V,
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Convergence

e The portion of almost prefect bit channels is
A W), meaning that the capacity is achieved.

e Example: capacities for VN = 212 for BEC(0.5)

1 T e S R i CIRrS: SN S AR L i A SR
R IR T PR ey g (e
T e e T e e e o o B i e e R .*‘ ......
i
LR i
i 1
1
[ 1
L] o
2z
1 .L‘.S— H
g Propartion=0.0938 !
2 L . :
= 04
@)
L] o
ozl ; £ '
Dl mmmm e e m D e s . -_-----‘,-u-'--_- ______ ,".:'T'.."“":; _________ TR, (T
. ' - h Y + "o i + & ’ B % "
: e ;i £t AT A : - T > - .
0 5] 1000 150 2000 2500 3000 3500 000

Index of channel



160

Encoding

e Given N = 2", calculate C(Wy, ,,..p, ) for all
synthetic bit channels.

e Givenrate R <1 and K = NR, sort
C(Wp,»,..», ) in descending order and
define the union of the indices of the first
K elements as the information set ().

e Choose the information bits u!* and freeze
1 to be all-zero. Obtain the codeword

X = (U,Q' 'Q'C) FN
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Construction Example
e W is a BEC(0.5), N = 8, R=0.5.

C(Wh) Rank
0.0039 8 frozen 0 Fan T\ Pan) W _;’_/1
- LS WL/ LS
0.1211 7 frozen @ 'an) Pan w
. L ./
0.1914 0 frozen © Fan Fan W _Is
- G L/
™ Y
0.6836 4 data Uy & W —
0.3164 h frozen © Fan Fan W _IS
- S A
Pan Ye
0.8086 3 data U D w st
Pan Y+
0.8789 2 data  {f7 P W =
Ya
0.9961 1 data Uy w =
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Construction Example
e W is a BEC(0.5), N = 8, R=0.5.

frozen 2y o 1 & 1 W IRg
f 0 T 0 /my | 1 Pan 1 Yo
N YT ™ Encoding
frozen L)L - 4 0 W BRE -
T . complexity
1 1 1 0

free . o w =+ O(NlOgN)
frozen )1 o 0 Ofw RE

free T 1 D 0 0 W | Y6

free Oyl 1 1 W Ry

free 1 T 1 1 1 W —XS
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Successive decoding

e For the decoding we need to compute the
likelihood ratio for u;,i = (b; -+ by,)

Wp.b,.p, (1)

Wh.b,.p,(10)
Ifi € Q,4; =1 if LR(u;) > 1; otherwise,
i; = 0.

e Similar to C(W,,, ... ), LR(u;) can also be
calculated recursively.

e For more details of the decoding, see

E. Arikan, “Channel polarization: A method for constructing capacity-achieving
codes for symmetric binary-input memoryless channels,” IEEE Trans. on
Information Theory,, vol. 55, no. 7, pp. 3051-3073, 2009.

LR(u;) =
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Probability of Error

e For a polar code with block length N and rate R < C(W),
the error probability under the successive cancellation
decoding is given by

P,<02 M) pg<o05

Bounds on block error probability

= 8= swerBounds (N=2-L &

== UpperBounds (N=2""
=¥= LowerBounds (N=E2

\_iD‘—F P \_t‘:u

| | | 1
0.45 04 03 025 02

035
Rate (Bits)



Polar Source Coding

Let x be a random variable generated by a
Bernoulli source Ber(p), i.e.,
Pr(x =0)=p and Pr(x=1)=1 — p.

The entropy (in bits) of xis

H(x) = —plog,p — (1 —p)log,(1 —p)
If H(x) =0, i.e.,, p=0o0r1, xis a constant, no
need for compression.
If H(x) =1, i.e., p = 0.5, xis totally random, we
cannot do any compression.

In other cases, can the polarization technique
be used to achieve rate H(x)?
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Source Polarization

e Similar idea applies to source coding:
general sources polarization extreme sources

e Basic source polarization

.................................. (U1,U2) = (X1,X2)F,

H(U1) + H(U2|U1) = H(U1,U2)
= H(X1,X2) = 2H(X)

b e H(U1) = H(x) = H(U2|U1)

The process is entropy-conserving, but we obtain two
new sources with higher and lower entropy than the
original one.

e Example: when p = 0.11, H(x) = 0.5, H(U1) =
0.713, H(U2|U1) = 0.287.




Source Coding

Keep polarizing by increasing N, the entropy of
the synthetic sources tends to O or 1.

Again, by the property of the martingale, the
proportion of those sources with entropy close
to 1 is close to H(X).

Source coding is realized by recording the
indexes with entropy close to 1, while the rest
bits can be recovered with high probability
because their associated entropy is almost 0.

For me details, see

E. Arikan, “Source polarization,” JEEE ISIT 2010, pp. 899-903.
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Performance
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Extensions

e Polar codes also achieve capacity of other types
of channels (discrete or continuous).

e Achieve entropy bound of other types of sources
(lossless or lossy).
e Quantum polar codes, network information

theory...

Big bang in information theory
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Lecture 13

e Continuous Random Variables

o Differential Entropy
— can be negative
— not really a measure of the information in x
— coordinate-dependent

e Maximum entropy distributions
— Uniform over a finite range
— Gaussian if a constant variance
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Continuous Random Variables

Changing Variables
o pdf: £, (x) CDF: F.(0)=[ f.(t)dt
e For g(x) monotonic: y=g(x) < x=g'(y)

F,(»)=F,(g"() or 1-F,(¢"'(»)
£,0 )_dF(y) e ) a’g ()

=1, (x#;l—;‘ where x=g"(y)
e Examples:
Suppose f,(x)=0.5 for xe(0,2) = F,(x)=0.5x
(@) y=4x = x=025y = f,(¥)=0.5x0.25=0.125 for ye(0,)

(b) z=x* = x=2" = f,(2)=05x%z"=0.125z" for ze(0,16)



Joint Distributions

Joint pdf: Sy (2, )
Marginal pdf:  7,0=[ /., x.»dy

Independence: < f,,(x,y)=f(x)f, ()

Conditional pdf: _ ey ()
f)(|y (.X) fy (y)

Example:

fey=1for ye(Ol),xe(y,y+1)
f

Sy =1for xe(y,y+1)

S =— 1 for y € (max(0, x —1), min(x,1))
min(x,l — x)

Ty
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Entropy of Continuous R.V.

Given a continuous pdf f(x), we divide the range of xinto
bins of width A oa
— For each i, 3x, with f(x;)A= jm f(x)dx
Define a discrete random variable Y
— Y ={x;} and py= fx)A}
— Scaled, quantised version of f{x) with slightly unevenly spaced x;
H(y)=—)_ f(x)Alog(f(x,)A)
= —logA—Y" f(x)log(f(x)A

- —logA- [ f(x)log f(x)dx =—log A+ h(X)

A—0

Differential entropy:  a(x)=—[" f,(x)log f, (x)dx



Differential Entropy

. . A ©
Differential Entropy:  a(x)=—[" £, (x)log f, (x)dx = E—log f, (x)
Bad News:
— h(x) does not give the amount of information in x
— h(X) is not necessarily positive
— h(X) changes with a change of coordinate system

Good News:

— h,(X) — hy(X) does compare the uncertainty of two continuous
random variables

— Relative Entropy and Mutual Information still work fine

— If the range of x is normalized to 1 and then xis quantised to »
bits, the entropy of the resultant discrete random variable is
approximately 4(x)+n

174
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Differential Entropy Examples

e Uniform Distribution: x ~U(a,b)
— f(x)=(b-a)" for xe(a,b) and f(x) =0 elsewhere
— h(x)=- j:(b —a) " log(b—a) " dx =log(b—a)
— Note that 2(x) <0 if (b—a)< 1

- f(x)= (27[02 )_1/2 exp —%(x—,u)2 o

= h(x)=—(oge)[ f(x)In f(x)dx

=3 (loge)]” f(0)(~In2a0")~(x=s0’c?)

— %(log e)(ln(27TO'2) + O'_zE((x_'u)z ))

Z%(log e)(In(2z0?) +1) = Vlog(2mec?) = log(4.10) bits

e Gaussian Distribution: x~N(y,jz)
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Multivariate Gaussian

Given mean, m, and symmetric positive definite covariance matrix K,
L, 1
X,., ~Nm,K) < f(x)= ‘ZﬂiK‘ ’ exp(——(x—m)TKl(x—m)j

h(f)= _(loge)J‘f(x)x/—%(x m) K™ (x—m)- l/zln\anU dx
= s log(e)x (In 27K+ E((x-m) K (x—m))
=5 log(e)x <ln 27zK\+Etr((x—m)(X—m)TK_l))
= s log(e)> (in27K| + tr(E(x ~m)(x—m) 'K )
=1 log(e) ( 2721(‘ + tr(KK_1 )) =" log(e)x (ln‘zﬂK‘ + n)

=1/zlog(‘27zeKD 1/zlog((27ze)”‘KD bits
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Other Differential Quantities

Joint Differential Entropy
WX, y) =[] o, )log £, (x, y)dxdy = E-log £, (x,¥)
Conditional Differen?al Entropy
hx|y)==[[ £, (. 3)log £y, (x| y)dxdy = h(X, y) = h(¥)
v

Mutual Information

Sy (X, 1)

10G) =\ 1., (x, 1 i
(X;) j j Fry (e p)log 08 e
Relative Differential Entropy of two pdf’s:

D(fll9)= [ f(x)log 2 gy

g(x)
=—h,(X)—E,logg(x)

dxdy = h(X)+h(y)—h(x,y)
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Differential Entropy Properties

Chain Rules  a(x,y)=h(x)+h(y | X)=h(y)+h(x|y)
I(x,y;2)=1(x;2)+1(y;Z| X)

Information Inequality: D(f | g)>0
Proof: Define S ={x: f(x)>0}

—D<f||g>—jf<x>1og§§§dx— [l g(")j

"7

<1 Eg(x)j =1o [ g(x)d]
<0g( ro0) "YW ™

= log(j g(x)dx] <logl=0
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Information Inequality Corollaries

Mutual Information > 0
1Y) =D(fyey | [ 1)) 20
Conditioning reduces Entropy
WXx)=h(x|y)=1(x;y)=0
Independence Bound

hX) = Y hOG X, ) < Y A(X)
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Change of Variable

Change Variable: y =g(x)
dg”' ()
dy
1 dx
(y)=-Elog(f,(y)) =-Elog(f,(g"(¥)))-Elog W

from earlier f, () =/, (g ()

=h(X)+ Elog

= —Elog(f, (x))-Elog Z—;‘

o
dx
Examples:
— Translation: y=x+a = dy/dx=1 = h(y)=h(x)
— Scaling: y=cx = dyldc=c = h(y)=h(x)+log|c|
— Vector version: y,, =Ax,, = h(y)=h(X)+logldet(A)|

not
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Concavity & Convexity

e Differential Entropy:
— h(x)is a function of £,(x) = 3 @ maximum
e Mutual Information:
— I(x; yisa function of £, (x) for fixed f,,, (v)
— I(x, ) is a convex function of f,,, (y) for fixed £, (x)

Proofs:
Exactly the same as for the discrete case: p,=[1-4, 4]”

@_\1 @ \1 Aux) 1
| @JOE 023 0;
e— @ (D—

H(x)>2H(x|2) I(x;y)>1(x;y|2) I(x,;y)<I(x;y|2)
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Uniform Distribution Entropy

What distribution over the finite range (a,b) maximizes the
entropy ?

Answer: A uniform distribution u(x)=(b—a)!
Proof:
Suppose f(x) is a distribution for x (a,b)
0<D(f||u) =~h,(x)—E, logu(x)
=—h,(X)+log(b—a)

= h,(x)<log(b-a)
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Maximum Entropy Distribution

What zero-mean distribution maximizes the entropy on
(—o0, o0)" for a given covariance matrix K ?

Answer: A multivariate Gaussian ¢(x) = \27zK\/ exp(— 1/2xTK‘1x)
Proof: 0<D(f[|$) =—h,(X)—E, log #(X)
= h,(X) <-(loge)E, (- 1/21n027z1<\) Vi K 'x)
= Vs(loge)In(27K|)+ tr( £, 3¢ K ))
= 1/z(log e)(ln(27zK )+ tr(I))
= log(27eK]) = h,(X)
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Summary

e Differential Entropy: h(X) :—.foowfx(x)logfx(x)dx
— Not necessarily positive
— h(xta)=n(x),  h(ax)=h(x) + log|q|
e Many properties are formally the same
— h(X)) < h(X)
— X VN =h(X)+h(y)—h(X, )20, D(fg)=E log(f/g) =0
— h(X) concave in f,(x); I(x; y) concave in f,(x)
e Bounds:

— Finite range: Uniform distribution has max: 4(x) =
log(b—a)

— Fixed Covariance: Gaussian has max: i(x) =
72log((27e)"|K])



Lecture 14

e Discrete-Time Gaussian Channel Capacity
e Continuous Typical Set and AEP
e Gaussian Channel Coding Theorem

e Bandlimited Gaussian Channel
— Shannon Capacity
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Capacity of Gaussian Channel

Discrete-time channel: y.=x + Z Z,
— Zero-mean Gaussian i.i.d. z ~ N(0,N) X Y,

. -1 2
— Average power constraint » E x; <P
i=1

Ey’=E(X+2) =EX*+2E(X)E(Z)+EZ* <P+N

Information Capacity

— Define information capacity: € = max /(x; )

I(X;y)(; h(y)=h(y | X) =h(y)-h(Xx+2]|X)

= h(y)-n(z|x) =hy)-h2)
< Y log2me(P+ N)-"log2meN

1 P
=—log| 1+—
2 g( Nj

The optimal input is Gaussian
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Achievability

VAN
.Ank .Ank
M Encoder L,éY_, Decoder Loz»

e An (M,n) code for a Gaussian Channel with power
constraint is

— A set of M codewords x(w)eX” for w=1:M with x(w)’x(w) < nP Vw

— A deterministic decoder g(y)<0:M where 0 denotes failure
— Errors: codeword: 4, max: A"  average:P"

1

e Rate R is achievable if 3 seq of (2% n) codes with 1™ — 0

n—oo

e Theorem: R achievable iff R<(C = 1/2log(1 + PN ‘1)
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Argument by Sphere Packing

Each transmitted x; is received as a
probabilistic cloud vy,

— cloud ‘radius’ = /Var(y|x)=+nN

Energy of y, constrained to n(P+N) so
clouds must fit into a hypersphere of

radius n(P+N)
Volume of hypersphere oc "
Max number of non-overlapping clouds:

(I’ZP-I‘ nN)l/m — 2‘/2n10g(1+PN_1)
(nN)*"
Max achievable rate is Y2log(1+P/N)




Continuous AEP

Typical Set: Continuous distribution, discrete time i.i.d.

For any >0 and any #, the typical set with respect to f(x) is
T = {x e §":|-n"log f(x)~ h(X)| < g}
where Sis the support of f< {x: f(x)>0}
f(x)= H f(x,) since x, areindependent

h(x)=E -log f(Xx)=-n"Elog f(X)
Typical Set Properties
1. p(xeT)>1-¢ for n> N,
n>N,
2. (1—g)2" =) < yol(T™) < 2nh0+2)

where Vol(4) = J' dx

xed
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Continuous AEP Proof

Proof 1: By law of large numbers

1M og f(x,) = -1 Y log £(X) > E—log f(X) = h(X)

prob
Reminder: x, >y = Ve&>0,3N,suchthatva>N, P(lx,-y|s)<e

Proof 2a:  1-s< | f(x)dx for n>N,

7"

< p-n(h(x)-2) '[ dx = 2-"(hxX)-) Vol(Tg(n))

Proof 2b:  1=[f00dx> [ f(%)dx

> 2—n(h(X)+8) Idx _ 2—n(h(X)+g) VOI(Tg(n))

7"
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Jointly Typical Set

Jointly Typical: x;, y; i.i.d from R= with £, (x.,)

J" = {x,y e R :|-n""log f, (X)—h(X)|< &,

=n " log £, ()~ h(y)| <.

—n 1 V) —h(X,
Properties: ! log £, (. ¥) —h(x.y)| <]

1. Indivp.d.: x,yeJ" =logf,, (X,Y)=—nh(X,y)tne

2. Total Prob: plx,yeJ™)>1-¢ for n>N,
n>N,
3. Size: (1—g)2"hxen=2) < Vol(Jé”))g n(h(x.y)+e)

n>N

4. Indep x,y": (-2 10»=9) < plx,y'e )< 21050
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Gaussian Channel Coding Theorem

R is achievable iff R<C =%log(l+PN"')

Proof («<):
Choose £ >0
Random codebook: x, e®R" for w=1:2"" where x, arei.i.d.~ N(0,P-¢)
Use Joint typicality decoding
Errors: 1. Power too big p(xTx > nP)—>0 = <gforn>M,
2.ynot)T. withx pXyeJ")<e for n>N,

2nR
3. another x J.T. withy ) p(x,,y, e J{") < (2" —1)x 27"/

j=2
Total Err P <e+e+27"UXNR39) <30 forlarge nif R < I(X;Y) -3¢
Expurgation: Remove half of codebook*: A" < 6¢
We have constructed a code achieving rate R—n!
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Gaussian Channel Coding Theorem

Proof (=): Assume P —0 and n'x"x< P for each x(w)
nR=HW) = 1W:,,) + HOW | ,,) "] S50 o5 20
< ](Xlzn;ylzn)+H(W | yl:n)
— h(ylzn)_h(ylzn | Xl:n)_l_H(W | yl:n)

< ih(yl.)—h(zkn)JrH(W Vi)

<> I(X;y,)+1+nRP™
i=1

< gl/zlog(1+PN1)+l+nRPe(”)

R<Yilog(1+ PN )+n" +RP" — Ylog(l+PN)



Bandlimited Channel

Channel bandlimited to fe(—W,W) and signal duration T
— Not exactly

— Most energy in the bandwidth, most energy in the interval
Nyquist: Signal is defined by 2WT samples

— white noise with double-sided p.s.d. 2N, becomes
i.i.d gaussian N(0,"2N,) added to each coefficient

— Signal power constraint = P = Signal energy < PT
e Energy constraint per coefficient: n 'x"x<PT/2WT="%W-P

Capacity:

] ( 1/2-P/Wj OWT
1+ X

C=—lo =Wlog| 1+
2 s N,/2 T g(

P j bits/second
More precisely, it can be represented in a vector space of
about n=2WT dimensions with prolate spheroidal
functions as an orthonormal basis
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Limit of Infinite Bandwidth

P ] bits/second

0

C= Wlog[1+

Minimum signal to noise ratio (SNR)

L, _F :P/C — In2=-1.6dB

N, B N, N, w-=

Given capacity, trade-off between P and W

- Increase P, decrease W
- Increase W, decrease P
- spread spectrum

- ultra wideband

195
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Channel Code Performance

POWER versus BANDWIDTH o
256 QAM | ! ' P, = 106 ® POWGI‘ lelted

5 uncoded — High bandwidth
el — Spacecraft, Pagers

25

20

0 — Use QPSK/4-QAM

j‘é’ 15 it e 1 — Block/Convolution Codes
o] e Bandwidth Limited

z ] — Modems, DVB, Mobile

g 8-FSK BFSK phoneS

£ s — 16-QAM to 256-QAM

§ (12 Turbo) — Convolution Codes

@ (1/3 Turbo)

e Value of 1 dB for space
— Better range, lifetime,
weight, bit rate
— $80 M (1999)

0 0.5 1 15 2
Required Bandwidth/Bit Rate

Diagram from “An overview of Communications” by John R Barry
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Summary

e (Gaussian channel capacity

C= llog (1 + 5) bits/transmission
2 N

e Proved by using continuous AEP
e Bandlimited channel

C :Wlog(l—l— P j bits/second

0

— Minimum SNR =-1.6 dBas W —w
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Lecture 15

e Parallel Gaussian Channels
— Waterfilling

e Gaussian Channel with Feedback
— Memoryless: no gain
— Memory: at most 2 bits/transmission
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Parallel Gaussian Channels

« n independent Gaussian channels

— A model for nonwhite noise wideband channel where each
component represents a different frequency

— e.g. digital audio, digital TV, Broadband ADSL, WiFi Z
(multicarrier/OFDM)

 Noise is independent z ~ N(0,N)) 4l Y
e Average Power constraint EX/X < nP | |

e Information Capacity: C= max I(X;y) oz

f(X):E X" x<nP

« R<C < R achievable % y
— proof as before
e What is the optimal f(x) ?
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Parallel Gaussian: Max Capacity

Need to find fix): C= max I(X)y)

f(x):E,x"x<nP
I(X;¥)=h(Y)—Nh(Y |X) =h(y)—h(Z]|X)
= h(Y) = h@)=h(y) - > h(Z)
< S (h(y,) - h(z) ?il/zlog@ +PN;")
Equality when: (a) y; indep = x indep; (b) x. ~ N(0, P)

We need to find the P, that maximise Zl/zlog(HBN{l)
i=1
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Parallel Gaussian: Optimal Powers

We need to find the P, that maximise log(e)} v In(1+PN;")
— subject to power constraint ZB. = nP i=1
— use Lagrange multiplier )

J=Y %I+ PN )-23 P V
i=1 i=l
o _, 1= P+N, = P
63_/2(B+Ni) A=0 = B+N,=v P, P, 3
AlsoiPl.:nP = v=P+n—1iNl.
i=1 i=1 N3
N, N,

Water Filling: put most power into
least noisy channels to make equal
power + noise in each channel
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Very Noisy Channels

o What if water is not enough?

e Must have P,>0 Vi §
e If v<N, then set P=0 and recalculate
v (i.e., P,= max(v - N,0) ) Pl e by
Kuhn-Tucker Conditions: |
(not examinable) N, [
2

— Max f{(x) subject to Ax+b=0 and
g.(x)>0 for iel: M with f, g, concave

— set J(x)=f(x)- Zu,g,(X) AT Ax

— Solution x,, A, 4 |ff
VJ(x,)=0, Ax+b=0, g.(x,)=20, =0, ug(x,)=0
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Colored Gaussian Noise

e Suppose y=X+2z where E zz"=K, and E xXxX" =Ky

e We want to find Ky to maximize capacity subject to
power constraint: EY x}<nP < t(Ky)<nP

i=1

— Find noise eigenvectors: K, =QAQ" with QQ" =1

- Now Qly=Qx+Qz=Q'x+w
where E ww! =E Q’zz’Q = E Q'K Q = A is diagonal
* = W, are now independent (so previous result on P.G.C. applies)

— Power constraint is unchanged tr(Q"K ,Q)=tr(K ,QQ")=tr(K , )
— Use water-filling and indep. messages Q'K ,Q+A =

— Choose  Q'K,Q=vI-A where v=P+n"tr(A)

= K,=Q(I-A)Q’
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Power Spectrum Water Filling

e If z is from a stationary process |
then diag(A) — power spectrum 4§
N(f) n—>00 32
— To achieve capacity use waterfilling on 1 L4

noise power spectrum ;,J \/\ /J L

P:J._V;max(v—N(f),O) df

C:J‘V:Vl/zlog£1+maX(V_N(f),O)]df e

N(f) ﬁ/ V\\
— Waterfilling on spectral domain %/\ 0 /\

eeeeeeeee
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Gaussian Channel + Feedback

X, :xl-(Waylzi—l) Zl

1

Does Feedback add capacity ? w p
—> i yz
— White noise (& DMC) — No Coder >
— Coloured noise — Not much |_>

100:Y) = ()= h(y | W) = h¥) = S h(Y, W, ¥, ))  Chain rule

- h(Y)_Zh(yl | w, yl:i—l’Xl:iﬂzl:i—l) )([:X[(VV,J/]:F]), Z= y — X
i=l1

=h(Y)= D h(Z W, V1 X0 Z1) Z = y — X and translation invariance
i=1

= h(y)—Zh(zl. | Z1,1) Zz may be colored; z depends only on Z,, ,
i=1
— h(y)—h(2) Chain rule, A(z)= ‘/zlogq27zeKZD bits
| |K | = maximize I(w;y) by maximizing 4(y) = y gaussian
Y
< log — we can take z and x =y — z jointly gaussian

2 TIK

1
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Maximum Benefit of Feedback

w %
X .
| — ™| Coder —»y’

K, | |—>

C,p= (111<13)1xpl/2n_1 log |
’ tr(Ky )<n 7
g S |2(Kx +K,)| Lemmas 1 & 2:
< max 0
wkoe S| K, | 12(Kx+Kz)| > |Ky]|
2" K, +K
= max %n 'log Ky K, | |KA|=k"|(A
tr(K, )<nP |Kz |
K, +K, |

=1+ max Yn 'log =1+ C, bits /transmission

tr(Ky )<nP | K

z

Ky = Kx+Kz if no feedback
C . capacity without feedback

Having feedback adds at most 2 bit per transmission for colored Gaussian
noise channels
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Max Benefit of Feedback: Lemmas

Lemma 1: K, ,+K, , = 2(K,tK,)

K,.,+K, ,=E(x+z)x+2) +E(x-z)x-2)
:E(xxT+sz+sz+zzT + xxT—sz—sz+zzT)
= E(2xxT + 2zzT): 2(K, +K,)

Lemma 2: If F,G are positive definite then |F+GJ| > |F|
Consider two indep random vectors f~N(0,F), g~N(0,G)
l/zlog((Zize)n F+G |) — h(f+Q)

>h(f+g|g)=h(f|9)
— h(F) = 1/210g((27ze)" 'F |)

Hence: |2(K,tK,)| = | K., tK, ,| > |K

X

2l = Ky
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Gaussian Feedback Coder

X and z jointly gaussian = Y /
X=Bz+Vv(Ww) — ™| Coder L,é R
where v is indep of z and F’

B is strictly lower triangular since x; indep of z for ;>i.
y=x+z=(B+Dz+vVv
K, = Eyy’ =E(B+Dzz’ B+’ +w’ )=B+DK,B+I)" +K,
K, = Exx” =E(Bzz'B” +w’) =BK,B' +K,

| K: || o (B + I)Kzl(11<32+| ) +K,
subject to K, = tr(BK,B” +K, )< nP

Capacity: C,,, = max AR



Gaussian Feedback: Toy Example

2 1 0 0
n:2, P:2, KZ: . B:
I 2 b 0

X=BZ+V=x =v,x,=bz, +v,
Goal: Maximize (w.r.t. K, and »)

K, |5 (B+I)K, (B+I) +K, |
Subject to:

K, must be positive definite

Power constraint : tr(BKzBT + Kv)s 4
Solution (via numerically search):

b=0:  [K,=16 C=0.604 bits

b=0.69: [K,|=20.7 C=0.697 bits

|

det(K,)

Power: V1 V2 bzZ1

25

209

20F

15F

10f

det(K,)
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Summary

Water-filling for parallel Gaussian channel

B n l (V—Ni)+ x =max(x,0)
C—gzlog(l+ N j Z(V—Ni)+ _p
Colored Gaussian noise
(v=A) 4, eigenvealues of K,
C= Z_llzlog(lJr } Z(v—/ll.f:nP

Continuous Gaussian channel

_ " (=N
C= IWélog[1+ vy Y

Feedback bound 1

Cn,FB < Cn +E
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Lecture 16

e Lossy Source Coding
— For both discrete and continuous sources
— Bernoulli Source, Gaussian Source

o Rate Distortion Theory

- W

nat is the minimum distortion achievable at

a particular rate?

- W

nat is the minimum rate to achieve a

particular distortion?
e Channel/Source Coding Duality
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Lossy Source Coding

1o Encoder J((Xlzn)ékan> Decoder | X1
f() a()

Distortion function: d(x,x)=0
~ examples: () dy(x.%)=(x-%)" (i dH<x,»e>={

I
<>

0 x
X

1

H
<>

A n
— sequences:  d(x,X)=n"') d(x,,%,)
i=1

Distortion of Code f,( ), g,(): D= Exexnd(x,f()z E d(x,g(f(X)))

Rate distortion pair (R,D) is achievable for source X if
3 a sequence /() and g,() such that lim E _.dX,g,(f,(X)<D

n—



Rate Distortion Function

Rate Distortion function for {x;} with pdf p(X) is defined as
R(D) =min{R} such that (R, D) is achievable
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Theorem: R(D)=minI(x;x)over all p(x,x) such that:

(@) p(x)is correct
(b) E, . d(x,x)<D

— this expression is the Rate Distortion function for X

Lossless coding: If D=0 then we have R(D) = I(x ;X) = H(X)
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R(D) bound for Bernoulli Source

Bernoulli: X=1[0,1], py=[1-p, p] assume p <

— Hamming Distance:  d(x,x)=x®x

— If D>p, R(D)=0 since we can set g( )=0 2 oa]
- ForD<p<',if Ed(x,xX)<D then 3
[(X;X)=H(x)-H(x | X)
=H(p)-H(X® X | X)
> H(p)-H(X®X)
= H(p)—-H(D)

Hence R(D) > H(p) — H(D)
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R(D) for Bernoulli source

We know optimum satisfies R(D) > H(p) — H(D)
— We show we can find a p(x,x) that attains this.

— Peculiarly, we consider a channel with x as the
input and error probability D
1-D

Now choose r to give x the correct (1 0 0 1-p
probabilities: £ %i: L x
D

r(l1-D)+(-r)D=p

. 7 1 1 p
—r=(p=-D)1-2D)"', D<p =D
Now I(x;x)=H(x)-H(x|x)=H(p)-H(D)
and p(x #X)=D = distortion< D Hence R(D) = H(p) — H(D)

If D>por D > 1-p, we can achieve R(D)=0 trivially.
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R(D) bound for Gaussian Source

e Assume X ~N(0,0°)andd(x,x)=(x—-x)’
e Want to minimize /(x; x) subject to E(x —X)* <D

I(X: %) = h(X)—h(x| %)
Y log 270’ — h(X — X | X)
> log2mec” —h(X — X)
> log2mec” —! 210g(27zeVar(X —)?))
> log 2mec” — Y2 log 2 meD

2

I(X;X) > max(l/z logZ,OJ
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R(D) for Gaussian Source

To show that we can find a p(X,x)

] Z~ N(OaD)
that achieves the bound, we N
construct a test channel that X~ N(0,6*-D) X~ N(0,0%)
introduces distortion D<&? + >
A A 35
I(X;X)=h(X)—h(X|X) ]
=Ylog2mec” —h(X—X|X) s
— 1/210g 27[60-2 —h(Z | )?) 5 2 achievable
0_2 i4 1.5
=Y2log— 1
P o > impossible
= R(D) = max{2log—.0} o[ PO : i)
D'c?

2
O 2 /3 mp=40' . 2
— D(R):ﬁ cf. PCM D(R):m” _ 16/3-0

22R 22R




218

Lloyd Algorithm

Problem: Find optimum quantization levels for Gaussian pdf

a. Bin boundaries are midway between quantization levels
b. Each quantization level equals the mean value of its own bin

Lloyd algorithm: Pick random quantization levels then apply
conditions (a) and (b) in turn until convergence.

8 level quantization

N
0.2} / \ of
O/I. Ll |\ :

-3 -2 -1 0 1 2 3

3 T 0.2

/ 0.15
—

0.1

MSE

wudntuzauon ieveis

0 ! 1 < n
0 1 2
° Ite:a?tion 10 10 10 10
Iteration

Solid lines are bin boundaries. Initial levels uniform in [-1,+1]
Best mean sq error for 8 levels = 0.034502. Predicted D(R) = (0/8)% = 0.0156 5>



Vector Quantization

To get D(R), you have to quantize many values together
— True even if the values are independent

D =0.035 D = 0.028
2.5 2.5
O
(@) (@) (@] (@) (@]
ol - ol
o (o]
1.5} - 1.5}
o o o o o o
| _ o o
(@) (@) (@] (@] o (o]
0.5} ] 05l° © 5
o o o ) o o o
05 1 15 2 25 O 05 1 15 2 25

Two gaussian variables: one quadrant only shown
— Independent quantization puts dense levels in low prob areas
— Vector quantization is better (even more so if correlated)

219




Multiple Gaussian Variables

e Assume Xx;. are independent gaussian sources with
different variances. How should we apportion the
available total distortion between the sources?

e Assume X, ~N(0,c%)andd(x,x)=n"'(x-%) (x-%)< D

](Xlzn;)?lzn) ZZ](Xz’)?z)
i=l1

>ZR(D) Zmax(l/zlo 6—’2,0]

We must find the D, that minimize {Do if D, <o’

Zn: max (1/2
i=1

2 .
o, otherwise

| j
D, suchthat n') D =D
i=1

220
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Reverse Water-filling

2

L - g : < .
Minimize Zmax[l/z log Dl ,Oj subject to ) D, <nD R = Vzlog%
i=1 i i=1
Use a Lagrange multiplier: Yslog G
n 2 n
J:Zl/zlog‘; +42.D, tRl i IR3
a i=1 i i=1 I/ZIOgD_ _ X _ ]y _ _
—J=—1/2Dl._1+l=0 — Di:%/i_lzDo
oD,
> D,=nDy=nD = Dy=D XA XN
=l : : YslogG?
Choose R, for equal distortion z
! R
e If o?<D then set R=0 (meaning D,=c?) /210% # Ry Rfoi :
and increase D, to maintain the average A
distortion equal to D /2logD
% R €
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Channel/Source Coding Duality

e Channel Coding

— Find codes separated enough to
give non-overlapping output
images.

— Image size = channel noise
— The maximum number (highest
rate) is when the images just don't
overlap (some gap). Lossy encode
e Source Coding (
— Find regions that cover the sphere
— Region size = allowed distortion

— The minimum number (lowest rate)
is when they just fill the sphere Sphere Covering
(with no gap).

Sphere Packing
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Gaussian Channel/Source

e Capacity of Gaussian channel (n: length)
— Radius of big sphere /n(P+N)

— Radius of small spheres VnN

— Capacity 2 Jn(P+N) :(P+Nj"/2
JnN" N

e Rate distortion for Gaussian source

— Variance o2 — radius of big sphere vns?
— Radius of small spheres Jxp for distortion D

— Rate HHR(D) _ 0_2 "
D
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Channel Decoder as Source Encoder

Zl o N(O’D)

we2nR

y,., ~N(0,0>-D)

——» Encoder

+

X, ~N0,0%)
' » Decoder ——— >

VAN
we2nR

e For R=C =1/210g(1+(c72 —D)D‘l), we can find a channel
encoder/decoder so that p(W #w)<ecand E(x,-y,)’ =D

e Now reverse the roles of encoder and decoder. Since
p(Xzy)=pw=w)<eand E(x,— X))’ = E(x,—y,)’ =D

Channel
—» Encoder

z. ~N(O,D)

yl:n )(11’1 - N(O’Gz)

+

-

Channel
Decoder

A
we2'R
—>

Channel
Encoder [

x>

We have encoded x at rate R=Y%log(o>D") with distortion D!
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Summary

Lossy source coding: tradeoff between rate and
distortion

Rate distortion function
kD)= i 1(GX)
Bernoulli source: R(D) = (H(p) - H(D))*

Gaussian source

o) +
(reverse waterfilling): R(D) = (%log%)

Duality: channel decoding (encoding) < source
encoding (decoding)
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Nothing But Proof

e Proof of Rate Distortion Theorem

— Converse: if the rate is less than R(D), then
distortion of any code is higher than D

— Achievability: if the rate is higher than R(D),
then there exists a rate-R code which
achieves distortion D



Review

X, Encoder

1,0

fx. )el:2mk

227

Decoder

g,()

x>

Rate Distortion function for x whose p,(x) is known is
R(D)=inf R suchthat 3f,,g, with limE,_,,d(X,X)< D

Rate Distortion Theorem:

n—0

R(D)=minI(x;x)over all p(x|x)suchthat £, _.d(x,x)<D

R(D) curve depends on your choice of d(,)

Decreasing and convex

achievable

iImpossi

05 1 1.5
Oc?
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Converse: Rate Distortion Bound

Suppose we have found an encoder and decoder at rate R,
with expected distortion D for independent x; (worst case)

We want to prove that R, >R(D)=R(E d(x;X))
— We show first that &y 2 n_lzl(X,-;)?,-)
~ We know that  1(x;:%,) 2 R(E d(x;: %))
— and use convexity of R(D) to show

n Y R(Ed(x;X))> R(nIZE d(xi;)?l.)j = R(E d(X;X)) = R(D)



Convexity of R(D)

If p(x|x) and p,(x|x) are
associated with (D, R)) and (D,,R,)
on the R(D) curve we define

p,(x|x)=Ap,(x|x)+(1-A)p,(x|x)
Then
Epld(x,i) =AD,+(1-1)D, =D,

R(D)<I, (X;X)
<AL, (X X)+ (=), (X;X)
=AR(Dy) +(1-A)R(D,)

3.5

229

1.5



230

Proof that R > R(D)

nRO 2 H()?ln) 2 H(/\gln) _H(/\gl:n | Xl:n) Uniform bOund; H()? 1 X)=>0

=1(X,,;Xy,) Definition of I(;)
ZZ[(XZ.;)?Z.) x. indep: Mut Inf
i=1 Independence Bound

> Zn:R(E d(xl.;)?l.))z nz n_lR(E d(xl.;)?l.)) definition of R
i=1 i=1

> nR(nIZE d()(l,)?l)j = nR(E d(Xlnﬂ’)?ln)) convexity
i=1 defn of vector d( )

> nR(D) original assumption that E(d) < D
and R(D) monotonically decreasing
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Rate Distortion Achievability

X, Encoder | /.0 €1:2" | Decoder | X
_ln g, >
£.0) g.()

We want to show that for any D, we can find an encoder
and decoder that compresses x;., to nR(D) bits.

* pyIsgiven

e Assume we know the p(x|x) that gives I(x;x)=R(D)

e Random codebook: Choose 2% random X, ~p,
— There must be at least one code that is as good as the average

>

e Encoder: Use joint typicality to design
— We show that there is almost always a suitable codeword
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Distortion Typical Set

Distortion Typical: (xl.,)?l.) e X xX drawn i.i.d. ~ p(x, X)

T = ke XM x X"

—n" log p(x)—H(X)
—n"'log p(X)— H(X)

<é&,

<eé,

—nlog p(x. %)~ H(X,X)| < &
d(x, %)~ E d(x,%)| < &
Properties of Typical Set:

1. Indiv p.d.:
2. Total Prob:

x,XxeJ{") = log p(x,

X)=-nH(X,X)tne

p(x,fiech’f;)>l—g for n>N,
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Conditional Probability Bound

N

Lemma: xxeJ ) = p(x)> p(k|x)pCx#re)

Proof:  p(x|x)=27 (%.%)
p(x)
A) p(f(,x)
p(%)p(x)
2—n(H(x,)?)—g)

take max of top and min of bottom

bounds from def" of J

< p(X 2—n(H()()+8)2—n(H()?)+g)

— p(i)zn([(X;)?)+38) def of 1
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Curious but Necessary Inequality

Lemma: u,ve[0l],m>0 = (I-wv)" <l-u+e™
Proof: u=0: ¢ 20 = (1-0)"<1-0+e™™

u=1: Define f(v)=e'-1+v = f'(v)=1-¢"
fO)=0and f'(v)>0forv>0 = f(v)=0forve[0,1]
Hence forve[0,1], 0<l-v<e™ =(1-v)" <e™

O<u<l: Define g (u)=(1-uv)"
= g"(x) = m(m -1V’ (1-uv)"> 20= g (u) convex

1-u)" =g ()< (A-u)g, (0)+ug, (1)
= (-l +u(l=v)" <l-u+ue ™ <l—u+e™
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Achievability of R(D): preliminaries

X, Encoder

1,0

fx. )el:2mk

Decoder

g,()

A
X

n

Choose D and find a p(x| x) such that 7(x; x)=R(D); Ed(x,x)< D
Choose 6 >0and definep, ={ p(®) =) p(x)p(x|x) }

Decoder: For each we1:2" choose g, (w) =%, drawni.i.d.~p’
Encoder: f,(x)=minwsuch that (xx,)eJ{" else 1if no such w

Expected Distortion: D =E,__ d(x,%)
— over all input vectors x and all random decoding functions, g
— for large n we show p=p+s so there must be one good

code
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Expected Distortion

We can divide the input vectors x into two categories:
a) if 3wsuchthat (xx,)eJ{” thend(x,x,)<D+¢

since E d(x,x) <D

b) if no such w exists we must have d(x,x )<d_.
since we are assuming that d(,) is bounded. Suppose
the probability of this situation is P..

Hence D =E,, d(x,X)
<A-P)D+ée)+Ld,,

<D+e&+Pd

e max

We need to show that the expected value of P, is small
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Error Probability

Define the set of valid inputs for (random) code ¢
V(g)=1{x:3wwith (x, g(w)) e J|
We have P = Zp(g) > p(x)= ZP(X) > p(g)

xgV (g) g:xel (g)

Define K (x,x) =1if (x,x) e J|" else 0
Prob that a random % does not match xis 1- )" p(X)K(x,%)

X 2"k
Prob that an entire code does not match x is (1 - > pP(R)K(x, ﬁ)j

Hence P = Z p(X)(l —Z pP(X)K(x, i)j
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Achievability for Average Code

Since X% eJ" = p(X)> p(x|x)2 U003
2nR
F, = ZP(’Q(I — Zp(f()K(x, f()]

2nR
<D p(x) (1 - PR X)K(x,%)- 2—n(1<x;)e)+3g)j

Using(1—uv)”" <1—u+e™™"
withu = Zp(f( IX)K(X,X); v=2"xx=ne, g, ok

< Z p(x)(l - Z p(X|x)K(x,X)+ exp(— 9 -n(I(x:X)+3) 5 nR )j

Note: 0<u,v<1asrequired
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Achievability for Average Code

})e < Z p(X)(l — Z p(f( | X)K(X, ﬁ) 4+ exp(— 2—n(1(X;)?)+3g)2nR )j

, Mutual information does
Ja A n\R—1 X;X -3
=1- Z P(X,X)K(x,X)+ exp(— 2 et 8)) not involve particular x

_ P{(X, &) o J§'f§ }+ exp(— 2n(R_1(X;f()—3e))
>0

n—>0

since both terms — 0 as n — « provided nR > I(x, X) + 3¢
Hence V6 >0,D =E,, d(x,X) canbe made<D+65
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Achievability

Since V6 >0,D =E, , d(x,X) canbemade<D+56
there must be at leastone g with £_ d(x,Xx) <D+
Hence (R,D) is achievable for any R > R(D)

A
nR
X., Encoder | f(X.,)€l:2 Decoder | Xi
1y, - "

1,0 g,()

thatis limE, (x,x)<D

In fact a stronger result is true (proof in C&T 10.6):
Vo >0,Dand R > R(D),3f,,g, With p(d(x,X)<D+0) > 1

n—»o0



Lecture 1/

e Introduction to network information
theory

e Multiple access
e Distributed source coding
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Network Information Theory

System with many senders and receivers

New elements: interference, cooperation,
competition, relay, feedback...

Problem: decide whether or not the sources can

be transmitted over the channel

— Distributed source coding

— Distributed communication

— The general problem has not yet been solved, so we
consider various special cases

Results are presented without proof (can be

done using mutual information, joint AEP)
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Implications to Network Design

e Examples of large information networks
— Computer networks
— Satellite networks
— Telephone networks

o A complete theory of network communications
would have wide implications for the design of
communication and computer networks

e Examples

— CDMA (code-division multiple access): mobile phone
networ

— Network coding: significant capacity gain compared to
routing-based networks



Network Models Considered

e Multi-access channel

e Broadcast channel

e Distributed source coding

e Relay channel

e Interference channel

e Two-way channel

e General communication network
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State of the Art

e Triumphs e Unknowns
— Multi-access channel — The simplest relay
o . channel
A;:A A i A\‘i A
oy
— Gaussian broadcast — The simplest
channel interference channel
/'J.h A A
A — T4 E;
= A A

Reminder: Networks being built (ad hoc networks, sensor
networks) are much more complicated
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Multi-Access Channel

Example: many users
communicate with a

common base station over
a common channel

What rates are achievable
simultaneously?

Best understood multiuser
channel

Very successful: 3G CDMA
mobile phone networks




Capacity Region

e Capacity of single-user Gaussian channel

C= llog(l + ﬁj = C(ﬁ)
2 N N

e Gaussian multi-access channel with m users

Y = in. +Z
. . i=1
e Capacity region

P

k<€ ﬁj Transmission: independent and simultaneous
) p (i.i.d. Gaussian codebooks)

R +R, <C —] _ . _
N Decoding: joint decoding, look for m
R+R +R, <C %Pj codewords whose sum is closest to Y

The last inequality dominates when all rates
are the same

< mP
2R < C(W] The sum rate goes to « with m
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Two-User Channel

e Capacity region 4 o
P\
R <C it C( ) Onion
N peeling
Rz<C—P—2
N
&+&<C’B+gj
N ~
— Corresponds to CDMA T o) (2™

— Surprising fact: sum rate
= rate achieved by a single sender with power P,+P,

e Achieves a higher sum rate than treating
interference as noise, i.e.,

C h +C b
P+N B+N




Onion Peeling

Interpretation of corner point: onion-peeling
— First stage: decoder user 2, considering user 1 as noise
— Second stage: subtract out user 2, decoder user 1

In fact, it can achieve the entire capacity region

— Any rate-pairs between two corner points achievable by time-
sharing

Its technical term is successive interference cancelation
(SIC)

— Removes the need for joint decoding

— Uses a sequence of single-user decoders

SIC is implemented in the uplink of CDMA 2000 EV-DO
(evolution-data optimized)
— Increases throughput by about 65%

249
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Comparison with TDMA and FDMA

e FDMA (frequency-division multiple access)

P
Rlellog(l+N1 j

o

P,
Rzszlog(l+N2 j

A
e TDMA (time-division multiple access)

— Each user is allotted a time slot, transmits and other
users remain silent

— Naive TDMA: dashed line

— Can do better while still maintaining the same
average power constraint; the same capacity region
as FDMA

o CDMA capacity region is larger
— But needs a more complex decoder



Distributed Source Coding

Associate with nodes are sources that are
generally dependent

How do we take advantage of the dependence
to reduce the amount of information
transmitted?

Consider the special case where channels are
noiseless and without interference

Finding the set of rates associate with each
source such that all required sources can be
decoded at destination

Data compression dual to multi-access channel

251
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Two-User Distributed Source Coding

Xand Yare correlated

But the encoders cannot

communicate; have to
encode independently

A single source: R > H(X)
Two sources: R> H(X,Y) if

encoding together

What if encoding separately?
e Of course one can do R > H(X) + H(Y)
e Surprisingly, R = H(X,Y) is sufficient (Slepian-Wolf

coding, 1973)

e Sadly, the coding scheme was not practical (again)

Decoder

— (X, 1)
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Slepian-Wolf Coding

Achievable rate region R, |
R >H(X|Y)
R,2H(Y | X) H(Y) -

R +R,>H(X,Y)
Core idea: joint typicality

Interpretation of corner point R,
H(X)a R2 - H(YIX)
— X can encode as usual

— Associate with each x7is a jointly
typical fan (however Y doesn’t know)

— Y sends the color (thus compression)

— Decoder uses the color to determine
the point in jointly typical fan
associated with x?

Straight line: achieved by time-
sharing

H(Y|X) |~




Wyner-Ziv Coding

Distributed source coding with side information

254

Y is encoded at rate R, X ——>] Encoder sl Decoder —m £
Only X to be recovered

How many bits R, are R, T
required? Y == Bncoder

If R, = H(Y), then R, = H(X]Y) by Slepian-Wolf coding

In general R > H(X|U)

R, 2 1(Y;U)

where U is an auxiliary random variable (can be
thought of as approximate version of Y)



Rate-Distortion
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e Given Y, what is the rate-
distortion to describe X?

R, (D)=min min{/(X;W)—-I1(Y;W)}

pwx) f

x—>

Y

Encoder |

Decoder jrmim f'

over all decoding functions f: Y xW — X
andall p(w|x)suchthat £ d(x,x)<D

X,W,y

e The general problem of
rate-distortion for

correlated sources
remains unsolved

X"%

Encoder 1

——————————
i(x™) € 27k,

Y7

Encoder 2

_ﬁ
JO") € 2nR2

Decoder

p— (,;'n' ;fﬂ)
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Lecture 18

e Network information theory — II
— Broadcast
— Relay
— Interference channel
— Two-way channel

— Comments on general communication
networks
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Broadcast Channel

ARE YoU NODDING 1N I
AGREEMENT, ok FALLING
ASLEEP 2

One-to-many: HDTV station sendmg dlfferent
information simultaneously to many TV receivers
over a common channel; lecturer in classroom

What are the achievable rates for all different
receivers?

How does the sender encode information meant
for different signals in a common signal?

Only partial answers are known.
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Two-User Broadcast Channel

e Consider a memoryless broadcast channel with
one encoder and two decoders

e Independent messages at rate R, and R,

e Degraded broadcast channel: p(y,, y,|x) = p(y,|x)
POl y1)

— Meaning X — Y, —» Y, (Markov chain)
— Y, is a degraded version of Y, (receiver 1 is better)
e Capacity region of degraded broadcast channel

R, <I(U;Y,)
R <I(X;Y,|U)
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Scalar Gaussian Broadcast Channel

e All scalar Gaussian broadcast channels belong to
the class of degraded channels ., .,
Y =X+Z

Y,=X+27, Y,
X Y,

e Capacity region Coding Strategy

R < cﬁﬁj Encoding: one codebook with power a.P at
N, rate R,, another with power (1-a)P at rate
(1-a)P R,, send the sum of two codewords

R, <C

? (CXP'l‘sz Decoding: Bad receiver Y, treats Y, as noise;

good receiver Y, first decode Y,, subtract it
out, then decode his own message
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Relay Channel

e One source, one destination. one or more
intermediate relays e

e Example: one relay
— A broadcast channel (Xto Y and Y,)
— A multi-access channel (X and X; to Y)

— Capacity is unknown! Upper bound:

C < sup min{/(X,X,;Y),[(X;Y,Y, | X,)}
p(x,x;)

— Max-flow min-cut interpretation
e First term: maximum rate from Xand X; to Y
e Second term: maximum rate from X to Y and Y;
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Degraded Relay Channel

e In general, the max-flow min-cut bound cannot
be achieved

e Reason
— Interference
— What for the relay to forward?
— How to forward?
e Capacity is known for degraded relay channel

(i.e, Y is a degradation of Y,, or relay is better
than receiver), i.e., the upper bound is achieved

C'= sup min{/(X, X,;Y), [(X;Y, Y, | X))j

p(xaxl)
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Gaussian Relay Channel

e Channel model

Y=X+Z7 Variance(Z,) = N,
Y=X+7Z+X, +7Z, Variance(Z,) = N,
e Encoding at relay: x, =/, Y,.---.Y,.)
e Capacity
C = max min{C(P+ A+ 2\/(1_05)])])1 } C(apj}
0<a<l ]\/'1 _|_N2 N1

- If

relay —desitination SNR % > source —relay SNR

then c=c(p/n,) (capacity from source to relay can
be achieved; exercise)

— Rate c=c(r/n,+N,)) without relay is increased by the
relay to c=c(P/n,)
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Interference Channel

e Two senders, two receivers, with crosstalk

X I

<

X g

— Y, listens to X; and doesn't care
what X, speaks or what Y, hears

— Similarly with X, and Y,
e Neither a broadcast channel nor a multiaccess channel
e This channel has not been solved

— Capacity is known to within one bit (Etkin, Tse, Wang
2008)

— A promising technique — interference alignment
(Camdambe, Jafar 2008)
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Symmetric Interference Channel

e Model

1

Y =X, +taX,+Z

Y,=X,+aX +Z,

{]-_ﬂf:'

EE:'
@
-2,

LS

2
1,

1
UEEE{E

b<a<}
%{ﬂiﬂl

1<
2

v < 2
2.

equal power P
Var(Z,)=Var(Z,)=N
e Capacity has been derived in the strong
interference case (a > 1) (Han, Kobayashi, 1981)
— Very strong interference (a? > 1 + P/N) is equivalent to
no interference whatsoever

e Symmetric capacity (for each user R; = R,)

dgym () i=

i Csym(lN R,SNR)
SNR,mR—}m;f—gg';’ErF&m Cawgn(SNR)




d _ Csym
M~ log SNR

0.66

0.5

Capacity

:  capacity
. : orthogonal (TDM or FDM)
v
. .
! ' .
iy
bt
s
P S interference treated as noise
s | % 1
. *
- ]
v .
: "
1 s L | 1
0 05 0.66 1 15 2 25
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Very strong interference = no interference

e Each sender has power P and rate C(P/N)

o Independently sends a codeword froma  z-~w~om
Gaussian codebook X, "

o Consider receiver 1 ;
— Treats sender 1 as interference ™ "2
— Can decode sender 2 at rate C(a2P/(P+N)) Zy~N O, N)
— If C(a?P/(P+N)) > C(P/N), i.e.,
rate2 > 1 >rate2 > 2 (crosslink is better)
he can perfectly decode sender 2

— Subtracting it from received signal, he sees a clean
channel with capacity C(P/N)
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An Example

Two cell-edge users (bottleneck of the cellular network)

No exchange of data between the base stations or
between the mobiles

Traditional approaches

— Orthogonalizing the two links (reuse 2)

— Universal frequency reuse and treating interference as noise

Higher capacity can be achieved by advanced
interference management




directions (Shannon 1961) ,
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Two-Way Channel

e Similar to interference channel, but in both

e Feedback

— Sender 1 can use previously

P{J"]-J";I-"p X3)
Y| ———t —— }’2

received symbols from sender 2, and vice versa
— They can cooperate with each other
e (Gaussian channel:

— Capacity region is known (not the case in general)
— Decompose into two independent channels

R, < C(ij
Nl

R2<C(

5

2

3

Coding strategy: Sender 1 sends a codeword;
so does sender 2. Receiver 2 receives a sum
but he can subtract out his own thus having an
interference-free channel from sender 1.



General Communication Network

e Many nodes trying to communicate with each other

o Allows computation at each node using it own message
and all past received symbols

o All the models we have considered are special cases

e A comprehensive theory of network information flow is
yet to be found

< . —
X ¥,)
} ?j * X, Y

269

i
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Capacity Bound for a Network

e Max-flow min-cut
— Minimizing the maximum
flow across cut sets

yields an upper bound
on the capacity of a

C= min[C‘l + C:, C2+ C3+ C,‘_,Cd‘f' Cs,cl + E3+ Cs;

network
e Quter bound on capacity
region
ZR(I',J') < ](X(S);Y(SC) |X(SC))
ieS,jeS*

— Not achievable in general

S S¢

. o (X,.Y,)

{Xjr YI]
. L
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Questions to Answer

Why multi-hop relay? Why
decode and forward? Why
treat interference as noise?

Source-channel separation?
Feedback?

What is really the best way
to operate wireless
networks?

What are the ultimate limits
to information transfer over
wireless networks?
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Scaling Law for Wireless Networks

e High signal attenuation:
(transport) capacity is O(n)
bit-meter/sec for a planar
network with n nodes (Xie-
Kumar'04)

e Low attenuation: capacity can
grow superlinearly

e Requires cooperation between
nodes

e Multi-hop relay is suboptimal
but order optimal
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Network Coding

e Routing: store and forward .

(as in Internet)
e Network coding: recompute ’
and redistribute

e Given the network topology, &
coding can increase
capacity (Ahlswede, Cai, Li,
Yeung, 2000) S
— Doubled capacity for butterfly
network

e Active area of research




Lecture 19

e Revision Lecture
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Summary (1)

o Entropy:  H(0)=Y p(x)x-log,p(x)= E ~log,(py(x))

— Bounds: 0< H(x)<logX
— Conditioning reduces entropy: H(Y | xX)<H(y)
— Chain Rule: Hx,) =Y Hx, | x,)< Y H(x,)

H(X, 1 V,) < Y HX 1)
e Relative Entropy: i

D(pllq)=E,log(p(x)/q(x))=0
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Summary (2)

e Mutual Information: @)
I(y;xX)=H()-Hy [ X) HOD H(y)
= H(x)+H(y)-H(X,y)=Dlp, , |Ip,p,)
— Positive and Symmetrical: 1(x;y)=1(y;x)>0

—X, yindep & HXx,))=H())+H(Xx)=I1(x;))=0
—Chain Rule:  1(x, ;y)= Z[(X Y1X.)

X.independent = I(Xx,. ;V,. )>Z[(X V)

p(yi‘Xl:n;yl:i—l):p(yi‘xi) — [(Xln’yln)gzl(xﬂyl)
i=1
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Summary (3)

Convexity: f”(x) =20 = f(x) convex = Efix) > EX)
— H(p) concave in p

— I(x; y) concave in p, for fixed p

— I(x; y) convex in p,,, for fixed p,

Markoviy ) &z p(z]x,9) = p(z| ) < [(x: 2| y) =0

= I(xX; N=21(x;2 and I(x; N=1(xy|2

Fano: X>Vo>X=>plXx#x 2H(X|y)_1
ol ) log(| X|-1)
Entropy Rate: H(X)=limn'H(x,,)

— Stationary process HX)=limH(x, |X,, )

— Markov Process: HX)=limH(x,| X, )



Summary (4)

|X]
Kraft: Uniquely Decodable = » D™ <1 = 3 instant code
i=1

Average Length: Uniquely Decodable = L.=E I(x) > H,(X)
Shannon-Fano: Top-down 50% splits. L. < H,(X)+1

Huffman: Bottom-up design. Optimal. L, <H,(x)+1
— Designing with wrong probabilities, q = penalty of D(p||q)
— Long blocks disperse the 1-bit overhead

Lempel-Ziv Coding:

— Does not depend on source distribution
— Efficient algorithm widely used
— Approaches entropy rate for stationary ergodic sources

278
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Summary (5)

e Typical Set
— Individual Prob  xeZ” =logp(x) = —nH(X)£ne
— Total Prob p(xeT")>1-g for n>N,
— Gjze (1= g)2"H002) ”><N ‘Tg(n)‘ < nHGOe)

— No other high probability set can be much smaller
o Asymptotic Equipartition Principle
— Almost all event sequences are equally surprising
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Summary (6)

DMC Channel Capacity: C=maxI(X;))

Coding Theorem "

— Can achieve capacity: random codewords, joint typical decoding
— Cannot beat capacity: Fano inequality

Feedback doesn'’t increase capacity of DMC but could
simplify coding/decoding

Joint Source-Channel Coding doesn’t increase capacity of
DMC



281

Summary (7)

Polar codes are low-complexity codes directly built from
information theory.

Their constructions are aided by the polarization
phenomenon.

For channel coding, polar codes achieve channel
capacity.

For source coding, polar codes achieve the entropy
bound.

And much more.
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Summary (8)

o Differential Entropy: &(x)=E-logf,(x)
— Not necessarily positive
— h(xta)=h(x),  h(ax)=h(x)+loglal, (X)) <h(X)
— 1 Y =h(X)+h()) - h(x, )20, D(flg)=E log(fig) = 0
e Bounds:
— Finite range: Uniform distribution has max: A(x) = log(b—a)
— Fixed Covariance: Gaussian has max: 4(x) = Ylog((2ze)"K])

e (aussian Channel
— Discrete Time: C=%log(1+PN1)
— Bandlimited: C=W log(1+PN, ' W)
e For constant C: E,N, =PC™'N,' = (W/C)(Z(W/C)_l —1)W:>w In2=-1.6dB
— Feedback: Adds at most V2 bit for coloured noise
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Summary (9)

o Parallel Gaussian Channels: Total power constraint 2.F =nP
— White noise: Waterfilling: P, =max(v—N,,0)
— Correlated noise: Waterfill on noise eigenvectors

e Rate Distortion: R(D) = min  1(X;X)

P -1 Ed (X, X)<D

— Bernoulli Source with Hamming d: R(D) = max(H(p,)—H(D),0)
— (Gaussian Source with mean square d: R(D) = max(“:log(c? D1),0)

— Can encode at rate R: random decoder, joint typical encoder

— Can't encode below rate R: independence bound
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Summary (10)

Gaussian multiple access ® <C( j RZ“(%]
channel R+R <c(P;Pj, C(x)=%log(l+x)
Distributed source coding r > u(x|v), r>HT|X)

— Slepian-Wolf coding R +R,>2H(X,Y)

Scalar Gaussian broadcast channel

R<c|%| R <C 1—)P ) hcp<t
N, aP+ N,

Gaussian Relay channel
C = max min<rC(P_HD1 +2\/(l_a)PPl } C(apj}

0<a<l ]\/'1 + ]\/'2 ]\/'1
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Summary (11)

e Interference channel
— Strong interference = no interference

e (Gaussian two-way channel
— Decompose into two independent channels

e General communication network
— Max-flow min-cut theorem
— Not achievable in general

— But achievable for multiple access channel
and Gaussian relay channel



