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Course InformationCourse Information
• Lecturer: Dr. Cong Ling (Senior Lecturer)

– Office: Room 815, EE Building
– Phone: 020-7594 6214Phone: 020 7594 6214
– Email: c.ling@imperial.ac.uk

• Handouts
– Slides: exam is based on slides
– Notes: contain more details
– Problem sheets

• Course homepage
– http://www.commsp.ee.ic.ac.uk/~cling

Y l t lid / bl h t / t– You can access lecture slides/problem sheets/past papers
– Also available in Blackboard

• Gradingg
– 1.5-hour exam, no-choice, closed-book
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LecturesLectures
Introduction and background
1. Introduction

Digital communications
8. Digital representation of signals

2. Probability and random 
processes

3 Noise

9. Baseband digital transmission
10.Digital modulation
11 N h t d d l ti3. Noise

Effects of noise on analog 
communications

11.Noncoherent demodulation
Information theory
12 Entropy and source coding

4. Noise performance of DSB
5. Noise performance of SSB and 

AM

12.Entropy and source coding
13.Channel capacity
14.Block codes

AM
6. Noise performance of FM
7. Pre/de-emphasis for FM and 

15.Cyclic codes

p
comparison of analog systems
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EE2EE2--4 vs. EE14 vs. EE1--66
• Introduction to Signals and Communications

– How do communication systems work?
– About modulation, demodulation, signal analysis...
– The main mathematical tool is the Fourier transform for 

deterministic signal analysis.deterministic signal analysis.
– More about analog communications (i.e., signals are continuous).

C• Communications
– How do communication systems perform in the presence of noise?
– About statistical aspects and noiseAbout statistical aspects and noise.

• This is essential for a meaningful comparison of various 
communications systems.

– The main mathematical tool is probability– The main mathematical tool is probability.
– More about digital communications (i.e., signals are discrete).
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Learning OutcomesLearning Outcomes
• Describe a suitable model for noise in communications
• Determine the signal-to-noise ratio (SNR) performance ofDetermine the signal to noise ratio (SNR) performance of 

analog communications systems
• Determine the probability of error for digitalDetermine the probability of error for digital 

communications systems
• Understand information theory and its significance in y g

determining system performance
• Compare the performance of various communications 

systems
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About the ClassesAbout the Classes
• You’re welcome to ask questions.

– You can interrupt me at any time.p y
– Please don’t disturb others in the class.

• Our responsibility is to facilitate you to learn.
You have to make the effortYou have to make the effort.

• Spend time reviewing lecture notes afterwards.
• If you have a question on the lecture material y q

after a class, then
– Look up a book! Be resourceful.

Try to work it out yourself– Try to work it out yourself.
– Ask me during the problem class or one of scheduled times of availability.
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ReferencesReferences
• C. Ling, Notes of Communication Systems, 

Imperial Collage.
• S Haykin & M Moher CommunicationS. Haykin & M. Moher, Communication 

Systems, 5th ed., International Student 
Version, Wiley, 2009 (£43.99 from Wiley)

• S. Haykin, Communication Systems, 4th ed., y , y , ,
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slides.
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• L.W. Couch II, Digital and Analog 
Communication Systems, 6th ed., Prentice-
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Multitude of CommunicationsMultitude of Communications
• Telephone network
• Internet
• Radio and TV broadcast
• Mobile communications
• Wi-Fi
• Satellite and space communications
• Smart power grid, healthcare…

• Analogue communications
– AM, FM

• Digital communications• Digital communications
– Transfer of information in digits
– Dominant technology today
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What’s Communications?What’s Communications?
• Communication involves the transfer of information from 

one point to another.
• Three basic elements

– Transmitter: converts message into a form suitable for 
transmissiontransmission

– Channel: the physical medium, introduces distortion, noise, 
interference
R i t t i bl f f th– Receiver: reconstruct a recognizable form of the message

Speech
Music
Pictures
Data
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Communication ChannelCommunication Channel
• The channel is central to operation of a communication 

systemy
– Linear (e.g., mobile radio) or nonlinear (e.g., satellite)
– Time invariant (e.g., fiber) or time varying (e.g., mobile radio)

• The information-carrying capacity of a communication 
system is proportional to the channel bandwidth

• Pursuit for wider bandwidth
– Copper wire: 1 MHz

Coaxial cable: 100 MHz– Coaxial cable: 100 MHz
– Microwave: GHz
– Optical fiber: THzOptical fiber: THz

• Uses light as the signal carrier
• Highest capacity among all practical signals
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Noise in CommunicationsNoise in Communications
• Unavoidable presence of noise in the channel

– Noise refers to unwanted waves that disturb communications
– Signal is contaminated by noise along the path.

• External noise: interference from nearby channels, human-
made noise, natural noise...

• Internal noise: thermal noise, random emission... in 
electronic devices

• Noise is one of the basic factors that set limits on 
i ticommunications.

• A widely used metric is the signal-to-noise (power) ratio 
(SNR)(SNR)

SNR= signal power
noise power

11

p



Transmitter and ReceiverTransmitter and Receiver
• The transmitter modifies the message signal into a form 

suitable for transmission over the channel
• This modification often involves modulation

– Moving the signal to a high-frequency carrier (up-conversion) and 
varying some parameter of the carrier wave

– Analog: AM, FM, PM
Digital: ASK FSK PSK (SK: shift keying)– Digital: ASK, FSK, PSK (SK: shift keying)

• The receiver recreates the original message by 
demodulationdemodulation
– Recovery is not exact due to noise/distortion
– The resulting degradation is influenced by the type of modulation

• Design of analog communication is conceptually simple
• Digital communication is more efficient and reliable; design 
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Objectives of System DesignObjectives of System Design
• Two primary resources in communications 

– Transmitted power (should be green)p ( g )
– Channel bandwidth (very expensive in the commercial market)

• In certain scenarios, one resource may be more important 
than the other
– Power limited (e.g. deep-space communication)

( )– Bandwidth limited (e.g. telephone circuit)

• Objectives of a communication system design
The message is delivered both efficiently and reliably subject to– The message is delivered both efficiently and reliably, subject to 
certain design constraints: power, bandwidth, and cost.

– Efficiency is usually measured by the amount of messages sent in 
unit power, unit time and unit bandwidth.

– Reliability is expressed in terms of SNR or probability of error.
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Information TheoryInformation Theory
• In digital communications, is it possible to operate at 

zero error rate even though the channel is noisy?
• Poineers: Shannon, Kolmogorov…

– The maximum rate of reliable transmission is 
calculated.

– The famous Shannon capacity formula for a channel 
with bandwidth W (Hz)

C = W log(1+SNR) bps (bits per second)C  W log(1+SNR) bps (bits per second)
– Zero error rate is possible as long as actual signaling 

rate is less than C.
M t f d t l d d th

Shannon

• Many concepts were fundamental and paved the 
way for future developments in communication 
theory.
– Provides a basis for tradeoff between SNR and 

bandwidth, and for comparing different communication 
schemes.

Kolmogorov
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Milestones in CommunicationsMilestones in Communications
• 1837, Morse code used in telegraph
• 1864 Maxwell formulated the eletromagnetic (EM) theory1864, Maxwell formulated the eletromagnetic (EM) theory
• 1887, Hertz demonstrated physical evidence of EM waves
• 1890’s-1900’s Marconi & Popov long-distance radio• 1890 s-1900 s, Marconi & Popov, long-distance radio 

telegraph
– Across Atlantic Ocean
– From Cornwall to Canada

• 1875, Bell invented the telephone
• 1906, radio broadcast
• 1918, Armstrong invented superheterodyne radio receiver 

(and FM in 1933)
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Milestones (2)Milestones (2)
• 1928, Nyquist proposed the sampling theorem 
• 1947, microwave relay system, y y
• 1948, information theory
• 1957, era of satellite communication began
• 1966, Kuen Kao pioneered fiber-optical 

communications (Nobel Prize Winner)
1970’ f t t k b• 1970’s, era of computer networks began

• 1981, analog cellular system
1988 digital cellular system debuted in Europe• 1988, digital cellular system debuted in Europe

• 2000, 3G network
• The big 3 telecom manufacturers in 2010• The big 3 telecom manufacturers in 2010
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Cellular Mobile Phone NetworkCellular Mobile Phone Network
• A large area is partitioned into cells
• Frequency reuse to maximize capacityFrequency reuse to maximize capacity
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Growth of Mobile CommunicationsGrowth of Mobile Communications
• 1G: analog communications

– AMPS

• 2G: digital communications
– GSM
– IS-95

• 3G: CDMA networks
– WCDMA
– CDMA2000

TD SCDMA– TD-SCDMA

• 4G: data rate up to 
1 Gbps (giga bits per second)1 Gbps (giga bits per second)
– Pre-4G technologies:

WiMax, 3G LTE
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WiWi--FiFi
• Wi-Fi connects “local” computers (usually within 100m 

range)g )
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IEEE 802.11 WiIEEE 802.11 Wi--Fi StandardFi Standard
• 802.11b

– Standard for 2.4GHz (unlicensed) ISM band( )
– 1.6-10 Mbps, 500 ft range

• 802.11a802.11a
– Standard for 5GHz band
– 20-70 Mbps, variable range
– Similar to HiperLAN in Europe

• 802.11g
– Standard in 2.4 GHz and 5 GHz bands
– Speeds up to 54 Mbps, based on orthogonal frequency division 

multiplexing (OFDM)multiplexing (OFDM)

• 802.11n
– Data rates up to 600 Mbps
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Satellite/Space CommunicationSatellite/Space Communication
• Satellite communication

– Cover very large areas
– Optimized for one-way transmission

• Radio (DAB) and movie (SatTV) 
broadcasting

– Two-way systems
• The only choice for remote-area and 

maritime communications
• Propagation delay (0.25 s) is 

uncomfortable in voice 
communications

• Space communication
– Missions to Moon, Mars, …
– Long distance, weak signalsLong distance, weak signals
– High-gain antennas
– Powerful error-control coding
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Future Wireless NetworksFuture Wireless Networks

Wi l I t t

Ubiquitous Communication Among People and Devices

Wireless Internet access
Nth generation Cellular
Ad Hoc Networks
Sensor NetworksSensor Networks 
Wireless Entertainment
Smart Homes/Grids
Automated HighwaysAutomated Highways
All this and more…

•Hard Delay Constraints
•Hard Energy Constraints
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Communication NetworksCommunication Networks
• Today’s communications networks are complicated 

systems
A large n mber of sers sharing the medi m– A large number of users sharing the medium

– Hosts: devices that communicate with each other
– Routers: route date through the networkRouters: route date through the network
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Concept of LayeringConcept of Layering
• Partitioned into layers, each doing a relatively simple task
• Protocol stackProtocol stack

Network
Application

Transport

Network

Link
Ph i l

Physical
Physical

TCP/IP protocol 
stack (Internet)

OSI Model 2-layer model
stack (Internet)

Communication Systems mostly deals with the physical layer but

24
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some techniques (e.g., coding) can also be applied to the network 
layer.



EE2EE2--4: Communication Systems4: Communication Systems

Lecture 2: Probability and Random Lecture 2: Probability and Random 
ProcessesProcesses

Dr. Cong Ling

Department of Electrical and Electronic Engineering
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OutlineOutline
• Probability

– How probability is defined
– cdf and pdf
– Mean and variance

Joint distribution– Joint distribution
– Central limit theorem

• Random processesp
– Definition
– Stationary random processes

Power spectral density– Power spectral density
• References

– Notes of Communication Systems, Chap. 2.3.y , p
– Haykin & Moher, Communication Systems, 5th ed., Chap. 5
– Lathi, Modern Digital and Analog Communication Systems, 3rd ed., 

Chap 11
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Why Probability/Random Process?Why Probability/Random Process?
• Probability is the core mathematical tool for communication 

theory.y
• The stochastic model is widely used in the study of 

communication systems.
• Consider a radio communication system where the received 

signal is a random process in nature:
– Message is random. No randomness, no information.
– Interference is random.

Noise is a random process– Noise is a random process.
– And many more (delay, phase, fading, ...)

• Other real-world applications of probability and randomOther real-world applications of probability and random 
processes include
– Stock market modelling, gambling (Brown motion as shown in the 
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Probabilistic ConceptsProbabilistic Concepts
• What is a random variable (RV)?

– It is a variable that takes its values from the outputs of a random p
experiment.

• What is a random experiment?
– It is an experiment the outcome of which cannot be predicted 

precisely.
– All possible identifiable outcomes of a random experiment– All possible identifiable outcomes of a random experiment 

constitute its sample space S.
– An event is a collection of possible outcomes of the random 

iexperiment.

• Example
For tossing a coin S = { H T }– For tossing a coin, S = { H, T }

– For rolling a die, S = { 1, 2, …, 6 }
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Probability PropertiesProbability Properties
• PX(xi): the probability of the random variable X taking on 

the value xii

• The probability of an event to happen is a non-negative 
number, with the following properties:
– The probability of the event that includes all possible outcomes of 

the experiment is 1.
The probability of two events that do not have any common– The probability of two events that do not have any common 
outcome is the sum of the probabilities of the two events 
separately.

• Example
– Roll a die:      PX(x = k) = 1/6     for k = 1, 2, …, 6
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CDF and PDFCDF and PDF
• The (cumulative) distribution function (cdf) of a random variable X

is defined as the probability of X taking a value less than the 
targument x:

• Properties

( ) ( )XF x P X x 
Properties

1 2 1 2

( ) 0, ( ) 1
( ) ( ) if

X X

X X

F F
F x F x x x

   
 

• The probability density function (pdf) is defined as the derivative of 
the distribution function:

( )( ) dF xf ( )( )

( ) ( )

XdF x
X dx

x

X X

f x

F x f y dy



 

( ) ( ) ( ) ( )
b

X X X
a

P a X b F b F a f y dy



     
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Mean and VarianceMean and Variance





xx

XX xxfdyyfxxXxP )()()(

x• If        is sufficiently small,


x

)( yf X Area

)( xf X

x
y

x

x

• Mean (or expected value  DC level):

[ ] ( )X XE X x f x dx


   E[ ]: expectation 
operator

• Variance ( power for zero-mean signals):



2 2 2 2 2[( ) ] ( ) ( ) [ ]X X X X XE X x f x dx E X   


     

operator
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Normal (Gaussian) DistributionNormal (Gaussian) Distribution
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Uniform DistributionUniform Distribution
fX(x)

1 b  ( )
0 elsewhere

0

X

a x b
f x b a

   



2
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a bE X
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


0

( )X

x a
x aF x a x b
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    

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
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Joint DistributionJoint Distribution
• Joint distribution function for two random variables X and Y

( ) ( )F x y P X x Y y  
• Joint probability density function

( , ) ( , )XYF x y P X x Y y  

2 ( , )( ) XYF x yf x y 

• Properties
1) ( ) ( ) 1F f d d

 

 

( , )
x y( , ) XY y

XYf x y  

1) ( , ) ( , ) 1

2) ( ) ( )

XY XYF f u v dudv

f x f x y dy

 



   



 

2) ( ) ( , )

3) ( ) ( )

X XY
y

f x f x y dy

f x f x y dx











3) ( ) ( , )

4) , ( , ) ( ) ( )

Y XY
x

XY X Y

f x f x y dx

X Y f x y f x f y




 


are independent
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Independent vs. UncorrelatedIndependent vs. Uncorrelated
• Independent implies Uncorrelated (see problem sheet)
• Uncorrelated does not imply IndependenceUncorrelated does not imply Independence
• For normal RVs (jointly Gaussian), Uncorrelated implies 

Independent (this is the only exceptional case!)

Let     be uniformly distributed in   

Independent (this is the only exceptional case!)
• An example of uncorrelated but dependent RV’s

 ]2,0[  Yy ],[

 20for)( 2
1  xxf

Y Locus of 
X and Y

Define RV’s X and Y as
 sincos  YX

Clearly, X and Y are not independent.

X

y, p
But X and Y are uncorrelated:

2
1

2[ ] cos sin 0!E XY d


   
35
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Joint Distribution of Joint Distribution of nn RVsRVs

• Joint cdf
1 2 1 1 2 2( , ,... ) ( , ,... )X X XF x x x P X x X x X x   

• Joint pdf
1 2 ... 1 2 1 1 2 2( , ,... ) ( , ,... )

nX X X n n nF x x x P X x X x X x  

n xxxF )(

• Independent

n

nnXXX

n xxx
xxxF

nXXX xxxf 
 ...

),...,(
21... 21

21...21

21
),...,(

• Independent

)()()()(

)()...()(),...,( 2121... 2121 nXXXnXXX

xfxfxfxxxf

xFxFxFxxxF
nn





• i.i.d. (independent, identically distributed)
The random variables are independent and have the same

)()...()(),...,( 2121... 2121 nXXXnXXX xfxfxfxxxf
nn



– The random variables are independent and have the same 
distribution.

– Example: outcomes from repeatedly flipping a coin.
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Central Limit TheoremCentral Limit Theorem
• For i.i.d. random variables,

z = x1 + x2 +· · ·+ xn1 2 n
tends to Gaussian as n
goes to infinity.

x1 + x2x1

• Extremely useful in 
communications.

• That’s why noise is usually 
Gaussian. We often say 
“Gaussian noise” or

x1 + x2
+ x3

x1 + x2+ 
x3 + x4

Gaussian noise  or 
“Gaussian channel” in 
communications.

Illustration of convergence to Gaussian 
distribution
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What is a Random Process?What is a Random Process?

• A random process is a time-varying function that assigns 
the outcome of a random experiment to each time instant:the outcome of a random experiment to each time instant: 
X(t).

• For a fixed (sample path): a random process is a timeFor a fixed (sample path): a random process is a time 
varying function, e.g., a signal.

• For fixed t: a random process is a random variable.p
• If one scans all possible outcomes of the underlying 

random experiment, we shall get an ensemble of signals.

• Noise can often be modelled as a Gaussian random 
process.
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An Ensemble of SignalsAn Ensemble of Signals
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Statistics of a Random ProcessStatistics of a Random Process
• For fixed t: the random process becomes a random 

variable, with mean

– In general the mean is a function of t

( ) [ ( )] ( ; )X Xt E X t x f x t dx



  

In general, the mean is a function of t.

• Autocorrelation function

1 2 1 2 1 2( , ) [ ( ) ( )] ( , ; , )X XR t t E X t X t xy f x y t t dxdy
 

 
   

– In general, the autocorrelation function is a two-variable function.
– It measures the correlation between two samples.
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Stationary Random ProcessesStationary Random Processes
• A random process is (wide-sense) stationary if 

– Its mean does not depend on tp

Its autocorrelation function only depends on time difference

( )X Xt 

– Its autocorrelation function only depends on time difference

( , ) ( )X XR t t R  

• In communications, noise and message signals can often 
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ExampleExample
• Show that sinusoidal wave with random phase 

)cos()(  tAtX c
with phase Θ uniformly distributed on [0,2π] is stationary.
– Mean is a constant:

)()( c

2 1 1( ) [0 2 ]f   

– Autocorrelation function only depends on the time difference:

2

0

1( ) [ ( )] cos( ) 0
2X ct E X t A t d


   


   

( ) , [0,2 ]
2

f   
  

2

( , ) [ ( ) ( )]

[ cos( ) cos( )]
X

c c c

R t t E X t X t

E A t t

 

   

  

   
2 2

2 22

[cos(2 2 )] [cos( )]
2 2

1

c c c
A AE t E

A A

        

2

0

2

1cos(2 2 ) cos( )
2 2 2

( ) cos( )

c c c
A At d

AR


      



  

   
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Power Spectral DensityPower Spectral Density
• Power spectral density (PSD) is a function that measures 

the distribution of power of a random process with 
ffrequency.

• PSD is only defined for stationary processes.
• Wiener Khinchine relation: The PSD is equal to the• Wiener-Khinchine relation: The PSD is equal to the 

Fourier transform of its autocorrelation function:
 dRfS fj

  2)()(

– A similar relation exists for deterministic signals

  deRfS fj
XX  

 2)()(

• Then the average power can be found as

Th f f d d h

2[ ( )] (0) ( )X XP E X t R S f df



   

• The frequency content of a process depends on how 
rapidly the amplitude changes as a function of time.
– This can be measured by the autocorrelation function
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Passing Through a Linear SystemPassing Through a Linear System

L t Y(t) bt i d b i d X(t) th h• Let Y(t) obtained by passing random process X(t) through 
a linear system of transfer function H(f). Then the PSD of 
Y(t)Y(t)

– Proof: see Notes 3 4 2

2( ) ( ) ( )Y XS f H f S f (2.1)

Proof: see Notes 3.4.2.
– Cf. the similar relation for deterministic signals

• If X(t) is a Gaussian process, then Y(t) is also a Gaussian ( ) p , ( )
process.
– Gaussian processes are very important in communications.
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Lecture 3: NoiseLecture 3: Noise

Dr. Cong Ling

Department of Electrical and Electronic Engineering
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OutlineOutline
• What is noise?
• White noise and Gaussian noiseWhite noise and Gaussian noise
• Lowpass noise
• Bandpass noise• Bandpass noise

– In-phase/quadrature representation
– Phasor representationp

• References
– Notes of Communication Systems, Chap. 2.
– Haykin & Moher, Communication Systems, 5th ed., Chap. 5
– Lathi, Modern Digital and Analog Communication Systems, 3rd ed., 

Chap. 11
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NoiseNoise
• Noise is the unwanted and beyond our control waves that 

disturb the transmission of signals.g
• Where does noise come from?

– External sources: e.g., atmospheric, galactic noise, interference; 
– Internal sources: generated by communication devices themselves. 

• This type of noise represents a basic limitation on the performance of 
electronic communication systemselectronic communication systems.

• Shot noise: the electrons are discrete and are not moving in a
continuous steady flow, so the current is randomly fluctuating.
Th l i d b th id d d ti f l t• Thermal noise: caused by the rapid and random motion of electrons 
within a conductor due to thermal agitation.

• Both are often stationary and have a zero-mean Gaussian y
distribution (following from the central limit theorem).
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White NoiseWhite Noise
• The additive noise channel

– n(t) models all types of noise( ) yp
– zero mean

• White noise
– Its power spectrum density (PSD) is constant over all frequencies,  

i.e.,
0( ) ,

2N
NS f f    

– Factor 1/2 is included to indicate that half the power is associated 
with positive frequencies and half with negative.

( ) ,
2N f f

– The term white is analogous to white light which contains equal 
amounts of all frequencies (within the visible band of EM wave).
It’s only defined for stationary noise– It s only defined for stationary noise.

• An infinite bandwidth is a purely theoretic assumption.
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White vs. Gaussian NoiseWhite vs. Gaussian Noise
• White noise PSD

SN(f) Rn()

– Autocorrelation function of
S l t diff t ti i t t l t d

)(
2

)(:)( 0  NRtn n 

– Samples at different time instants are uncorrelated. 
• Gaussian noise: the distribution at any time instant is 

GaussianGaussian
– Gaussian noise can be colored

• White noise   Gaussian noise

Gaussian 
PDF

– White noise can be non-Gaussian
• Nonetheless, in communications, it is typically additive 

white Gaussian noise (AWGN)
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white Gaussian noise (AWGN).



Ideal LowIdeal Low--Pass White Noise Pass White Noise 
• Suppose white noise is applied to an ideal low-pass filter 

of bandwidth B such that 
0 | |N f B 

B Wi Khi hi l i l i f i

0 , | |
( ) 2

0, otherwise
N

f B
S f

  


Power PN = N0B

• By Wiener-Khinchine relation, autocorrelation function
Rn() = E[n(t)n(t+)] = N0B sinc(2B) (3.1)

where sinc(x) = sin(x)/xwhere sinc(x) = sin(x)/x.
• Samples at Nyquist frequency 2B are uncorrelated

R () = 0  = k/(2B) k = 1 2Rn()  0,   k/(2B), k  1, 2, …
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Bandpass NoiseBandpass Noise
• Any communication system that uses carrier modulation will typically 

have a bandpass filter of bandwidth B at the front-end of the receiver.

• Any noise that enters the receiver will therefore be bandpass in nature: 
n(t)

y p
its spectral magnitude is non-zero only for some band concentrated 
around the carrier frequency fc (sometimes called narrowband noise).
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Example
• If white noise with PSD of N0/2 is passed through an ideal 

bandpass filter, then the PSD of the noise that enters the p ,
receiver is given by

0N f f
 0 ,

( ) 2
0, otherwise

C
N

N f f B
S f

   


• Autocorrelation function
Power PN  = 2N0B

Rn() = 2N0Bsinc(2B)cos(2fc)
– which follows from (3.1) by 

l i th f hift
( ) ( )g t G 

applying the frequency-shift 
property of the Fourier transform

• Samples taken at frequency 2B are still uncorrelated

0 0 0

( ) ( )
( ) 2 cos [ ( ) ( )]

g
g t t G G        
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Samples taken at frequency 2B are still uncorrelated.
Rn() = 0,  = k/(2B), k = 1, 2, …



Decomposition of Bandpass NoiseDecomposition of Bandpass Noise
• Consider bandpass noise within with any PSD 

(i.e., not necessarily white as in the previous example)
Cf f B 

( , y p p )
• Consider a frequency slice ∆f at frequencies fk and −fk.
• For ∆f small:For ∆f small:

– θk: a random phase assumed independent and uniformly 
)2cos()( kkkk tfatn  

k p p y
distributed in the range [0, 2)

– ak: a random amplitude.
∆f∆f

ff
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Representation of Bandpass NoiseRepresentation of Bandpass Noise
• The complete bandpass noise waveform n(t) can be 

constructed by summing up such sinusoids over the entire 
band i eband, i.e.,

( ) ( ) cos(2 )k k k k
k k

n t n t a f t     fkff ck  (3.2)

• Now, let fk = (fk − fc)+ fc, and using cos(A + B) = cosAcosB −
sinAsinB we obtain the canonical form of bandpass 

i

k k

noise
)2sin()()2cos()()( tftntftntn cscc  

where
))(2cos()( kck

k
kc tffatn   

(3.3)

(t) and (t) are baseband signals termed the in phase and

k

))(2sin()( kck
k

ks tffatn   
(3.3)
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– nc(t) and ns(t) are baseband signals, termed the in-phase and 
quadrature component, respectively.



Extraction and GenerationExtraction and Generation
• nc(t) and ns(t) are fully representative of bandpass noise.

– (a) Given bandpass noise, one may extract its in-phase and ( ) p , y p
quadrature components (using LPF of bandwith B). This is 
extremely useful in analysis of noise in communication receivers.
(b) Given the two components one may generate bandpass noise– (b) Given the two components, one may generate bandpass noise. 
This is useful in computer simulation.

nc(t) nc(t)

(t) (t)ns(t) ns(t)
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Properties of Properties of BasebandBaseband NoiseNoise
• If the noise n(t) has zero mean, then nc(t) and ns(t) have 

zero mean.
• If the noise n(t) is Gaussian, then nc(t) and ns(t) are 

Gaussian.
• If the noise n(t) is stationary, then nc(t) and ns(t) are 

stationary.
• If the noise n(t) is Gaussian and its power spectral density 

S( f ) is symmetric with respect to the central frequency fc, 
th ( ) d ( ) t ti ti l i d d tthen nc(t) and ns(t) are statistical independent.

• The components nc(t) and ns(t) have the same variance (= 
power) as (t)power) as n(t).
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Power Spectral DensityPower Spectral Density
• Further, each baseband noise waveform will have the 

same PSD:
( ) ( ), | |

( ) ( )
0, otherwise

N c N c
c s

S f f S f f f B
S f S f

   
  


(3.4)

• This is analogous to
( ) ( )g t G 

– A rigorous proof can be found in A. Papoulis, Probability, Random 
0 0 0

( ) ( )
( )2cos [ ( ) ( )]

g t G
g t t G G


    


   

g p p , y,
Variables, and Stochastic Processes, McGraw-Hill.

– The PSD can also be seen from the expressions (3.2) and (3.3) 
where each of n (t) and n (t) consists of a sum of closely spacedwhere each of nc(t) and ns(t) consists of a sum of closely spaced 
base-band sinusoids.
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Noise PowerNoise Power

Sc(f)=Ss(f)
• For ideally filtered narrowband noise, the PSD of nc(t)

and ns(t) is therefore given bys( ) g y

| |N f B 0 , | |
( ) ( )

0, otherwisec s

N f B
S f S f


  


(3.5)

• Corollary: The average power in each of the baseband 
f ( ) d ( ) i id ti l t thwaveforms nc(t) and ns(t) is identical to the average power 

in the bandpass noise waveform n(t).
• For ideally filtered narrowband noise the variance of (t)• For ideally filtered narrowband noise, the variance of nc(t)

and ns(t) is 2N0B each.
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PNc =  PNs  = 2N0B



Phasor RepresentationPhasor Representation
• We may write bandpass noise in the alternative form: 

( ) ( ) cos(2 ) ( )sin(2 )c c s cn t n t f t n t f t  

– : the envelop of the noise2 2( ) ( ) ( )r t n t n t 

( ) cos[2 ( )]
c c s c

cr t f t t  

: the envelop of the noise

– : the phase of the noise

( ) ( ) ( )c sr t n t n t 







  )(tan)( 1 tnt s p



 )(

)(
tnc



θ( ) 2 f ( )θ(t) ≡ 2 fct + (t)
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Distribution of Envelop and PhaseDistribution of Envelop and Phase
• It can be shown that if nc(t) and ns(t) are Gaussian-

distributed, then the magnitude r(t) has a Rayleigh, g ( ) y g
distribution, and the phase (t) is uniformly distributed.

• What if a sinusoid  Acos(2 fct) is mixed with noise?
• Then the magnitude will have a Rice distribution. g

• The proof is deferred to Lecture 11, where such p ,
distributions arise in demodulation of digital signals.
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Summary Summary 
• White noise: PSD is constant over an infinite bandwidth. 
• Gaussian noise: PDF is GaussianGaussian noise: PDF is Gaussian.
• Bandpass noise

– In-phase and quadrature compoments nc(t) and ns(t) are low-passIn phase and quadrature compoments nc(t) and ns(t) are low pass 
random processes.

– nc(t) and ns(t)  have  the  same  PSD.
– nc(t) and ns(t) have the same variance as the band-pass noise n(t).
– Such properties will be pivotal to the performance analysis of 

bandpass communication systems.bandpass communication systems.

• The in-phase/quadrature representation and phasor 
representation are not only basic to the characterization of p y
bandpass noise itself, but also to the analysis of bandpass 
communication systems.
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Dr. Cong Ling
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OutlineOutline
• SNR of baseband analog transmission

• Revision of AM

• SNR of DSB-SC

• References
– Notes of Communication Systems Chap 3 1-3 3 2– Notes of Communication Systems, Chap. 3.1-3.3.2.
– Haykin & Moher, Communication Systems, 5th ed., Chap. 6
– Lathi, Modern Digital and Analog Communication Systems, 3rd ed., 

Chap. 12
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Noise in Analog Communication Systems Noise in Analog Communication Systems 
• How do various analog modulation schemes perform in 

the presence of noise? 
• Which  scheme  performs  best? 
• How  can  we  measure  its  performance? 

Model  of  an  analog  communication  system 

Noise PSD: BT is the bandwidth, 

64

N0/2 is the double-sided noise PSD



SNRSNR
• We must find a way to quantify (= to measure) the 

performance of a modulation scheme.p
• We use the signal-to-noise ratio (SNR) at the output of the 

receiver:

o
average power of message signal at the receiver output

average power of noise at the receiver output
SPSNR

P
 

– Normally expressed in decibels (dB)

average power of noise at the receiver output NP

– SNR (dB) = 10 log10(SNR)
– This is to manage the wide range of power

levels in communication systems

dB
If x is power,
X (dB) = 10 log10(x)levels in communication systems

– In honour of Alexander Bell
– Example: 

X (dB)  10 log10(x)

If x is amplitude,
X (dB) = 20 log10(x)
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p
• ratio of 2  3 dB; 4  6 dB; 10  10dB

( ) g10( )



Transmitted PowerTransmitted Power
• PT:  The  transmitted  power
• Limited by: equipment capability battery life costLimited by: equipment capability, battery life, cost, 

government restrictions, interference with other channels, 
green communications etc

• The higher it is, the more the received power (PS), the 
higher the SNR

• For a fair comparison between different modulation 
schemes: 
– PT should be the same for all

• We use the baseband signal to noise ratio SNRbaseband to 
calibrate the SNR values we obtaincalibrate the SNR values we obtain 
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A  Baseband  Communication  System A  Baseband  Communication  System 
• It  does  not use  

modulation 
• It  is  suitable  for  

transmission  over  wires 
• The  power  it  transmits  

is  identical  to  the  
message  power: PT = P 

• No attenuation: PS = PT =
PP 

• The  results  can be 
extended to band passextended  to  band-pass  
systems 
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Output SNROutput SNR
• Average  signal (= message)  power 

P = the  area  under  the  triangular  curve
• Assume: Additive,  white  noise  with  power  spectral  

density  PSD = N0/2
A i t th i• Average  noise  power  at  the  receiver

PN = area under the straight line = 2W  N0/2 = WN0
• SNR at the receiver output:SNR  at  the  receiver  output: 

baseband
0

TPSNR
N W



– Note: Assume no propagation loss
• Improve  the  SNR  by:

0

– increasing  the  transmitted  power  (PT ↑), 
– restricting  the  message  bandwidth  (W ↓), 
– making the channel/receiver less noisy (N0 ↓)
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making  the  channel/receiver  less  noisy  (N0 ↓). 



Revision:  AM Revision:  AM 

• General  form  of  an  AM  signal:

A th lit d f th i

)2cos()]([)( tftmAts cAM 

– A:  the  amplitude  of  the  carrier
– fc:  the  carrier  frequency
– m(t): the message signalm(t):  the  message  signal 

• Modulation  index: 
pm

– mp: the peak amplitude of m(t), i.e., mp = max |m(t)|

p

A
 

mp:  the  peak  amplitude  of m(t), i.e., mp  max |m(t)|
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Signal  Recovery Signal  Recovery 

n(t)

1) l d t t1 A

Receiver model
n(t)

1) : use  an  envelope  detector.
This is the case in almost all commercial AM radio 
receivers

1 pA m   

receivers.
Simple circuit to make radio receivers cheap.

2) Otherwise: use synchronous detection = product2) Otherwise:  use synchronous detection  product 
detection = coherent detection 

Th t d t ti d d d l ti d i t h bl
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The terms detection and demodulation are used interchangeably.



Synchronous  Detection  for  AM Synchronous  Detection  for  AM 
• Multiply the waveform at the receiver with a local carrier of

the same frequency (and phase) as the carrier used at the 
t itttransmitter: 

22cos(2 ) ( ) [ ( )]2cos (2 )c AM cf t s t A m t f t  
[ ( )][1 cos(4 )]

( )
cA m t f t

A m t
  

  

• Use  a  LPF  to  recover  A + m(t) and  finally  m(t)

( )

• Remark: At the receiver you need a signal perfectly 
synchronized with the transmitted carrier 
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DSBDSB--SCSC
• Double-sideband suppressed carrier (DSB-SC)

( ) ( ) cos(2 )s t Am t f t
• Signal  recovery:  with  synchronous  detection  only 
• The received noisy signal is

( ) ( ) cos(2 )DSB SC cs t Am t f t 

• The received noisy signal is

)2sin()()2cos()()(
)()()(

tftntftnts
tntstx




)2i ()()2()]()([
)2sin()()2cos()()2cos()(

)2sin()()2cos()()(

tfttfttA
tftntftntftAm

tftntftnts

csccc

cscc









)2sin()()2cos()]()([ tftntftntAm cscc  

y(t)
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Synchronous Detection for DSBSynchronous Detection for DSB--SCSC
• Multiply  with  2cos(2fct):

( ) 2cos(2 ) ( )y t f t x t
2 2

( ) 2cos(2 ) ( )

( )2cos (2 ) ( )2cos (2 ) ( )sin(4 )
( )[1 cos(4 )] ( )[1 cos(4 )] ( )sin(4 )

c

c c c s c

y t f t x t

Am t f t n t f t n t f t
Am t f t n t f t n t f t



  
  

  

   
• Use  a  LPF  to  keep 

)()(~ tntAmy 

( )[1 cos(4 )] ( )[1 cos(4 )] ( )sin(4 )c c c s cAm t f t n t f t n t f t      

• Signal  power at  the  receiver  output:
)()( tntAmy c

• Power of the noise (t) (recall (3 5) and message

PAtmEAtmAEPS
22222 )}({)}({ 

• Power  of  the  noise  nc(t)  (recall (3.5), and message 
bandwidth W):

WNdfNP
W

2
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ComparisonComparison
• SNR  at  the  receiver  output: 

2A PSNR

• To  which  transmitted power  does  this  correspond?

o
02

SNR
N W



2A P

• So

2
2 2 2{ ( ) cos (2 )}

2T c
A PP E A m t f t 

So 

o
0

T
DSB SC

PSNR SNR
N W  

• Comparison  with

TPSNR SNR SNR  

• Conclusion: DSB-SC system has the same SNR performance as a

0
baseband DSB SC basebandSNR SNR SNR

N W   
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Conclusion: DSB SC system has the same SNR performance as a 
baseband system.
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Lecture 5: Noise performance of SSB Lecture 5: Noise performance of SSB 
and AMand AM

Dr. Cong Ling
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OutlineOutline
• Noise in SSB

• Noise in standard AM
– Coherent detectionCoherent detection 

(of theoretic interest only)
– Envelope detection

• References
– Notes of Communication Systems, Chap. 3.3.3-3.3.4.Notes of Communication Systems, Chap. 3.3.3 3.3.4.
– Haykin & Moher, Communication Systems, 5th ed., Chap. 6
– Lathi, Modern Digital and Analog Communication Systems, 3rd ed., 
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SSB  Modulation SSB  Modulation 
• Consider single  (lower)  sideband  AM: 

tftAtftAt 2i)(ˆ2)()( 

where   is  the  Hilbert  transform  of  m(t).

tftmtftmts ccSSB  2sin)(
2

2cos)(
2

)( 

)(ˆ tm
• is obtained by passing m(t) through a linear filter 

with transfer function −jsgn(f ).
)(ˆ tm

• and m(t) have  the  same  power P .
• The  average  power  is  A2P/4. 

)(ˆ tm
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Noise  in  SSB Noise  in  SSB 
• Receiver  signal x(t) = s(t) + n(t). 
• Apply a band-pass filter on the lower sidebandApply  a  band pass  filter  on  the  lower  sideband.
• Still denote by nc(t) the lower-sideband noise (different 

from the double-sideband noise in DSB).from the double sideband noise in DSB). 
• Using coherent detection:

( ) ( ) 2cos(2 )y t x t f t ( ) ( ) 2cos(2 )

( ) ( ) ( ) ( ) cos(4 )
2 2

c

c c c

y t x t f t
A Am t n t m t n t f t





 

         
   2 2

ˆ ( ) ( ) sin(4 )
2 s c
A m t n t f t

   
   
 

• After low-pass filtering,  
 





  )()()( ttAt
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





  )()(

2
)( tntmty c



Noise PowerNoise Power
• Noise  power for  nc(t) =  that  for  band-pass  noise  =  

N0W (halved compared to DSB) (recall (3.4))0 ( p ) ( ( ))
SN(f)

N0/2

f
ff Wf +Wf 0

0

fcfc-W-fc+W-fc 0

Lower-sideband noise

SNc(f)
N0/2

f
WW 0
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W-W 0

Baseband noise



Output SNROutput SNR
• Signal  power A2P/4

• SNR  at  output
PA2

• For a baseband system with the same transmitted power
WN
PASNRSSB

04


• For a baseband system with the same transmitted power 
A2P/4 

PA2

• Conclusion: SSB achieves the same SNR performance
WN
PASNRbaseband

04


Conclusion: SSB achieves the same SNR performance 
as DSB-SC (and the baseband model) but only requires 
half the band-width. 
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Standard  AM:  Synchronous  Detection Standard  AM:  Synchronous  Detection 

)()2cos()]([)( tntftmAtx  

• Pre-detection  signal:

)2sin()()2cos()()2cos()]([
)()2cos()]([)(

tftntftntftmA
tntftmAtx

csccc

c







)2sin()()2cos()]()([ tftntftntmA cscc  

• Multiply with 2 cos(2f t):• Multiply  with  2 cos(2fct):

( ) [ ( ) ( )][1 cos(4 )]c cy t A m t n t f t   

• LPF

( ) sin(4 )s cn t f t

• LPF
)()(~ tntmAy c
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Output SNROutput SNR
• Signal  power at  the  receiver  output: 

PtmEP  )}({ 2

• Noise  power: 
PtmEPS  )}({

WNPN 02

• SNR  at  the  receiver  output:
WNPN 02

P

• Transmitted power
02o AM

PSNR SNR
N W

 

• Transmitted  power

222

22 PAPAPT



222
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ComparisonComparison
• SNR  of  a  baseband  signal  with  the  same  transmitted  

power: PA2 p

• Thus:
WN
PASNRbaseband

02




Thus:

basebandAM SNR
PA

PSNR


 2

• Note:
12 

P

• Conclusion: the performance of standard AM with

12 
 PA

Conclusion: the performance of standard AM with 
synchronous recovery is worse than that of a baseband 
system.
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Model of AM Radio ReceiverModel of AM Radio Receiver

AM radio receiver of the superheterodyne type
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Model of AM envelope detector



Envelope  DetectionEnvelope  Detection for  for  Standard  AMStandard  AM
• Phasor  diagram  of  the  signals  present  at  an  AM  

receiver

• Envelope
x(t) 

Envelope

22

)(ofenvelope)( txty 

• Equation is too complicated

22 )()]()([ tntntmA sc 

Equation  is  too  complicated
• Must use limiting cases to put it in a form where noise and 

message are added
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message are added



Small Noise CaseSmall Noise Case
• 1st  Approximation:  (a)  Small  Noise  Case

)]([)( tmAtn 
• Then 

)]([)( tmAtn 

)]()([)( tntmAtn cs 
• Then

)]()([)( cs

)]()([)( tntmAty c
Identical to the post-
detection signal in the 

f h

• Thus 

)]()([)(y c

o 2 env
PSNR SNR

N W
 

case of synchronous
detection!

• And  in  terms  of  baseband  SNR: 

o
02 envN W

P

Valid for small noise onl !

basebandenv SNR
PA

PSNR


 2
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• Valid  for  small  noise  only!



Large Noise CaseLarge Noise Case
• 2nd  Approximation:  (b)  Large  Noise  Case

)]([)( tmAtn 
• Isolate  the  small  quantity: 

)]([)( tmAtn 
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Large Noise Case: Threshold EffectLarge Noise Case: Threshold Effect
• From  the  phasor  diagram:  nc(t) = En(t) cosθn(t)
• Then:

U x
)(

)(cos)]([21)()(
tE

ttmAtEty
n

n
n




• Use 1for
2

11  xxx

)(
)(cos)]([1)()(

E
ttmAtEty n

n









 


)(cos)]([)(
)(

)()(

ttmAtE
tE

y

nn

n
n









• Noise  is  multiplicative  here!
• No  term  proportional  to  the  message!

R lt th h ld ff t b l i l l (• Result: a threshold effect, as below some carrier power level (very 
low A), the performance of the detector deteriorates very rapidly. 
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Summary Summary 

A: carrier amplitude P: power of message signal N : single-sided PSD of noise

89

A: carrier amplitude, P: power of message signal, N0: single-sided PSD of noise, 
W: message bandwidth. 
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Outline Outline 

• Recap  of  FM

• FM  system  model  in  noise

• PSD of noise

• References
– Notes of Communication Systems, Chap. 3.4.1-3.4.2.
– Haykin & Moher, Communication Systems, 5th ed., Chap. 6

Lathi Modern Digital and Analog Communication Systems– Lathi, Modern Digital and Analog Communication Systems, 
3rd ed., Chap. 12
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Frequency  Modulation Frequency  Modulation 
• Fundamental  difference  between  AM  and  FM:

• AM: message information contained in the signal
amplitude Additive noise: corrupts directly theamplitude Additive noise: corrupts directly the 
modulated signal.

• FM:  message  information  contained  in  the  signal
frequency the effect of noise on an FM signal is 
determined by the extent to which it changes the 
frequency of the modulated signal.

• Consequently, FM signals is less affected by noise than 
AM signals
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Revision:  FMRevision:  FM
• A  carrier  waveform

s(t) = A cos[i(t)]( ) [ i( )]
– where i(t): the instantaneous  phase  angle. 

• When
s(t) = A cos(2f t) i(t) = 2f t

we  may  say  that 

dt
dff

dt
d 




2
12 

• Generalisation:  instantaneous  frequency:

1 ( )id t1 ( )( )
2

i
i

d tf t
dt




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FMFM
• In FM: the instantaneous frequency of the carrier varies 

linearly with the message:y g
fi(t) = fc + kf m(t)

– where kf is the frequency sensitivity of the modulator. 

• Hence (assuming i(0)=0):

( ) 2 ( ) 2 2 ( )
t t

t f d f t k m d          
• Modulated signal:

0 0
( ) 2 ( ) 2 2 ( )i i c ft f d f t k m d          

• Note:




  

t

fc dmktfAts
0

)(22cos)( 

– (a) The envelope is constant
– (b) Signal s(t) is a non-linear function of the message signal m(t).
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Bandwidth  of  FM Bandwidth  of  FM 
• mp = max|m(t)|: peak  message  amplitude.
• fc − kf mp <  instantaneous  frequency <  fc + kf mpfc f p q y fc f p
• Define: frequency deviation = the deviation of the 

instantaneous frequency from the carrier frequency:
∆f k∆f = kf mp

• Define: deviation ratio:
/f W  

– W: the message bandwidth.
– Small β: FM bandwidth  2x message bandwidth (narrow-band FM)

f

β g ( )
– Large β: FM bandwidth >> 2x message bandwidth (wide-band FM)

• Carson’s  rule  of  thumb:
B 2W(β+1) 2(∆f + W)BT = 2W(β+1) = 2(∆f + W)

– β <<1 BT ≈ 2W (as in AM)
– β >>1 BT ≈ 2∆f
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FM  ReceiverFM  Receiver

n(t)

• Bandpass  filter:  removes  any  signals  outside  the  bandwidth  of fc 
± BT/2 the predetection noise at the receiver is bandpass with a 
b d idth f Bbandwidth of BT. 

• FM  signal  has  a  constant  envelope use  a limiter to  remove  
any  amplitude  variationsy p

• Discriminator: a device with output proportional to the deviation in the 
instantaneous frequency it  recovers  the  message  signal
Final baseband lo pass filter has a band idth of W it• Final  baseband  low-pass  filter:  has  a  bandwidth  of W it  
passes  the  message  signal  and  removes  out-of-band  noise. 
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Linear  Argument  at  High  SNR Linear  Argument  at  High  SNR 
• FM is nonlinear (modulation & demodulation), meaning superposition 

doesn’t hold.

• Nonetheless, it can be shown that for high SNR, noise output and 
message signal are approximately independent of each other:message signal are approximately independent of each other: 

Output ≈ Message + Noise (i.e., no other nonlinear terms).

• Any  (smooth)  nonlinear  systems  are  locally  linear!
• This can be justified rigorously by applying Taylor series expansion.
• Noise does not affect power of the message signal at the output and• Noise does not affect power of the message signal at the output, and 

vice versa.
• We can compute the signal power for the case without noise, and 

accept that the result holds for the case with noise too. 
• We can compute the noise power for the case without message, 

and accept that the result holds for the case with message too
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and accept that the result holds for the case with message too. 



Output Signal Power Without NoiseOutput Signal Power Without Noise
• Instantaneous  frequency  of  the  input  signal: 

)(tmkff fi 

• Output  of  discriminator: 
)(tmkff fci 

)(tmk f

• So,  output  signal  power: 

)(f

PkP 2
– P :  the  average  power  of  the  message  signal 

PkP fS 
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Output Signal with NoiseOutput Signal with Noise
• In  the  presence  of  additive  noise,  the  real  

predetection  signal  is p g

0
( ) cos 2 2 ( )

t

c fx t A f t k m d       

• It can be shown (by linear argument again): For high SNR,

( ) cos(2 ) ( )sin(2 )c c s cn t f t n t f t  

It can be shown (by linear argument again): For high SNR, 
noise output is approximately independent of the message 
signal

In  order  to  calculate  the  power  of  output  noise, we may 
assume there is no message

i.e., we only  have  the  carrier  plus  noise present: , y p p

)2sin()()2cos()()2cos()(~ tftntftntfAtx csccc  
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Phase NoisePhase Noise

Phasor  diagram  of  
the FM carrier and

A

ns(t)

nc(t)
I t t h i

the  FM  carrier  and  
noise  signals 

• Instantaneous  phase noise: 

)(
)(tan)( 1

A
tnt s

i  

• For  large  carrier  power  (large  A): 
)(

)(
tnA c

i 

1 ( ) ( )( ) tan s s
i

n t n tt
A A

  

• Discriminator  output  =  instantaneous  frequency: 
( ) ( )1 1( ) i s

i
d t dn tf t 

 
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Discriminator OutputDiscriminator Output
• The  discriminator  output  in  the  presence  of  both  

signal  and  noise: d )(1g

dt
tdn

A
tmk s

f
)(

2
1)(




• What  is  the  PSD  of ( )( ) s
d

dn tn t
d



• Fourier  theory: 

( )d dt

( ) ( )t X fif ( ) ( )
( ) 2 ( )

x t X f
dx t j fX f

dt






if

then

• Differentiation with respect to time = passing the signal 
through a system with transfer function of H(f ) = j2 f
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through a system with transfer function of H(f ) j2 f



Noise PSDNoise PSD
• It follows from (2.1) that 

)(|)(|)( 2 fSfHfS io 

– Si(f ): PSD  of  input  signal
– So(f ): PSD  of  output  signal

H(f ) t f f ti f th t– H(f ): transfer  function  of  the  system 

• Then:    2( ) | 2 | ( )d sn t j f n t

B

 

 

PSD of PSD of

  0( )
2
T

s
Bn t N   

 
PSD of within band

  2
0( ) | 2 | / 2d Tn t f N f B  PSD of

Aft th LPF th PSD f i t t ( ) i t i t d i

2 2
2

0 02

( )1 1( ) | 2 |
2 2

s
i

dn t ff t f N N
A dt A A


 

         
  

PSD of

• After the LPF, the PSD of noise output no(t) is restricted in  
the band ±W

2

( ) fS f N f W (6 1)
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A

  (6.1)



Power  Spectral  DensitiesPower  Spectral  Densities

SNs(f)

(a) Power spectral density of quadrature component ns(t) of narrowband noise n(t). 
(b) Power spectral density of noise nd(t) at the discriminator output. 
(c) Power spectral density of noise no(t) at the receiver output.
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Outline Outline 

• Derivation of FM output SNR 

• Pre/de-emphasis to improve SNR

• Comparison with AM

• References
– Notes of Communication Systems, Chap. 3.4.2-3.5.
– Haykin & Moher, Communication Systems, 5th ed., Chap. 6

Lathi Modern Digital and Analog Communication Systems– Lathi, Modern Digital and Analog Communication Systems, 
3rd ed., Chap. 12
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Noise PowerNoise Power
• Average  noise  power  at  the  receiver  output: 

W


• Thus from (6 1)

( )
o

W

N NW
P S f df


 

• Thus, from (6.1)
32

0
02 2

2
3

W

N W

N WfP N df
A A

  (7.1)

• Average noise power at the output of a FM receiver

3A A

1

• A ↑ Noise↓ called the quieting effect

2powercarrier
1

A


• A ↑ Noise↓,  called  the quieting effect
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Output SNROutput SNR
• Since                 ,  the output SNR

2 23 fA k PP

PkP fS
2

• Transmitted power of an FM waveform:

3
0

3
2

fS
O FM

N

A k PPSNR SNR
P N W

  

• Transmitted  power  of  an  FM  waveform: 

2

2APT 

• From 

2

0

:f pT
baseband

k mPSNR
N W W

 and

2
2

2 2

3
3f

FM baseband baseband
p

k P PSNR SNR SNR
W m

 

• Valid when the carrier power is large compared with the 
noise power

2 (could be much higher than AM)basebandSNR
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Threshold effectThreshold effect
• The FM detector exhibits a more pronounced threshold 

effect than the AM envelope detector. p
• The threshold point occurs around when signal power is 

10 times noise power: 
2

0

10, 2 ( 1)
2 T

T

A B W
N B

  

• Below the threshold the FM receiver breaks (i.e., 
significantly deteriorated).

• Can be analyzed by examining the phasor diagram

ns(t)

108

A nc(t)



Qualitative  DiscussionQualitative  Discussion
• As the noise changes randomly, the point P1 wanders 

around P22
– High SNR: change of angle is small
– Low SNR: P1 occasionally sweeps around origin, resulting in 

h f 2 i h t tichanges of 2 in a short time

Illustrating impulse like 
components in  (t)  d(t)/dtcomponents in  (t)  d(t)/dt 
produced by changes of 2 in 
 (t); (a) and (b) are graphs of 
 (t) and  (t) respectively (t) and  (t), respectively.
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Improve Output SNRImprove Output SNR

• PSD  of  the  noise  at  the  detector  output square  of  
frequency.frequency. 

• PSD of a typical message typically rolls off at around 6 dB 
per decade p

• To  increase SNRFM: 
– Use  a  LPF  to  cut-off  high  frequencies  at  the  output

• Message  is  attenuated  too, not  very  satisfactory
– Use pre-emphasis and de-emphasis

• Message is unchanged
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• Message  is  unchanged
• High  frequency  components  of  noise  are  suppressed 



PrePre--emphasis  and  Deemphasis  and  De--emphasisemphasis

• H (f ): used to artificially emphasize the high frequency components ofHpe(f ): used to artificially emphasize the high frequency components of 
the message prior to modulation, and hence, before noise is 
introduced.

• H (f ): used to de-emphasize the high frequency components at the• Hde(f ): used to de-emphasize the high frequency components at the 
receiver, and restore the original PSD of the message signal.

• In  theory, Hpe(f ) f , Hde(f ) 1/f .
Thi i th t t SNR b d 13 dB• This  can  improve  the  output  SNR  by  around  13  dB.

•• Dolby noise reductionDolby noise reduction uses an analogous pre-emphasis technique to 
reduce the effects of noise (hissing noise in audiotape recording is 
l t t d hi h f )
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also concentrated on high frequency). 



Improvement  FactorImprovement  Factor
• Assume an ideal pair of pre/de-emphasis filters

( ) 1/ ( )H f H f f W 

• PSF of noise at the output of de-emphasis filter
( ) 1/ ( ),de peH f H f f W 

2 2f f 

• Average power of noise with de emphasis

2
0 02 2( ) , / 2, ( )

ode T N
f fN H f f B S f N
A A

 
  

 
recall

• Average power of noise with de-emphasis
2

2
02 ( )

W

N deW

fP H f N df
A

 
• Improvement factor (using (7.1))

02N deW A

32 0 3
23

2 22 2( ) 02

2

3 ( )W

N W

N A
Wf H f N dfN de d

P WI
P f H f df

  
 

without pre / de - emphasis
with pre / de - emphasis
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Example  Circuits Example  Circuits 
• (a) Pre-emphasis filter

0( ) 1 /H f jf f 

(b) D h i filt

0

0

( ) 1 /

1/ (2 ), , 2 1
peH f jf f

f rC R r frC 

 

  

• (b) De-emphasis filter

0

1( )
1 /deH f

jf f



• Improvement

01 /jf f

32WI
2 2 2

0

3
0

3 / (1 / )

( / )

W

W

I
f f f df

W f





• In commercial FM W = 15 kHz f0 = 2 1 kHz

0
1

0 03[( / ) tan ( / )]W f W f

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In commercial FM, W  15 kHz, f0  2.1 kHz
 I = 22  13 dB (a significant gain)



Comparison  of  Analogue  Systems Comparison  of  Analogue  Systems 
• Assumptions:

– single-tone  modulation,  i.e.:  m(t) = Am cos(2 fmt);g , ( ) m ( fm );
– the  message  bandwidth  W = fm;
– for  the  AM  system,  µ = 1;
– for the FM system, β = 5 (which is what is used in commercial FM 

transmission, with ∆f = 75 kHz, and W = 15 kHz). 

• With these assumptions we find that the SNR• With these assumptions, we find that the SNR 
expressions for the various modulation schemes become: 

SNR SNR SNR
1
3

DSB SC baseband SSB

AM baseband

SNR SNR SNR

SNR SNR

  



2

3
3 75
2 2FM baseband basebandSNR SNR SNR 

without pre/de-
emphasis
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Performance  of  Analog  SystemsPerformance  of  Analog  Systems
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Conclusions Conclusions 
• (Full) AM: The SNR performance is 4.8 dB worse than a 

baseband system, and the transmission bandwidth is BT = 
2W .

DSB Th SNR f i id ti l t b b d• DSB: The SNR performance is identical to a baseband 
system, and the transmission bandwidth is BT = 2W.

• SSB: The SNR performance is again identical, but the 
transmission bandwidth is only BT = W.T

• FM: The SNR performance is 15.7 dB better than a 
b b d t d th t i i b d idth ibaseband system, and the transmission bandwidth is BT = 
2(β + 1)W = 12W (with pre- and de-emphasis the SNR 
performance is increased by about 13 dB with the same

116

performance is increased by about 13 dB with the same 
transmission bandwidth). 
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Outline Outline 
• Introduction to digital communication

• Quantization (A/D) and noise

• PCM

• Companding 

• References
– Notes of Communication Systems, Chap. 4.1-4.3
– Haykin & Moher Communication Systems 5th ed Chap 7Haykin & Moher, Communication Systems, 5th ed., Chap. 7
– Lathi, Modern Digital and Analog Communication Systems, 

3rd ed., Chap. 6
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Block Diagram of Digital CommunicationBlock Diagram of Digital Communication
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Why Digital?Why Digital?
• Advantages:

– Digital signals are more immune to channel noise by using channel g g y g
coding (perfect decoding is possible!)

– Repeaters along the transmission path can detect a digital signal 
and retransmit a new noise free signaland retransmit a new noise-free signal 

– Digital signals derived from all types of analog sources can be 
represented using a uniform format 

– Digital signals are easier to process by using microprocessors and 
VLSI (e.g., digital signal processors, FPGA)
Digital systems are flexible and allow for implementation of– Digital systems are flexible and allow for implementation of 
sophisticated functions and control

– More and more things are digital…

• For digital communication: analog signals are converted to 
digital.
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SamplingSampling
• How densely should we sample an analog signal so that 

we can reproduce its form accurately? p y
• A signal the spectrum of which is band-limited to W Hz, 

can be reconstructed exactly from its samples, if they are 
taken uniformly at a rate of R ≥ 2W Hz.

• Nyquist  frequency: fs = 2W Hz
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QuantizationQuantization
• Quantization is the process of transforming the sample 

amplitude into a discrete amplitude taken from a finite set p p
of possible amplitudes.

• The more levels, the better approximation.
• Don’t need too many levels (human sense can only detect 

finite differences).
• Quantizers can be of a uniform or nonuniform type.
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Quantization NoiseQuantization Noise
• Quantization noise: the error between the input signal and 

the output signalp g
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Variance of Quantization NoiseVariance of Quantization Noise
• ∆:  gap between quantizing levels (of a uniform quantizer) 
• q: Quantization error = a random variable in the rangeq:  Quantization error  a random variable in the range  

• If ∆ is sufficiently small it is reasonable to assume that q is
2 2

q 
  

• If ∆ is sufficiently small, it is reasonable to assume that q is 
uniformly distributed over this range: 

1    

• Noise variance

,
( ) 2 2

0,
Q

q
f q

    
 otherwiseNoise variance

/22 2 2

/2

1{ } ( )N QP E e q f q dq q dq
 

 
  

 
/23 3 3 2

/2

1 1 ( )
3 24 24 12
q





   
       
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SNRSNR
• Assume:  the  encoded  symbol  has  n bits

– the  maximum  number  of  quantizing  levels  is  L = 2nq g
– maximum peak-to-peak dynamic range of the quantizer = 2n∆

• P: power  of  the  message  signal  
• mp = max |m(t)|: maximum absolute value of the message

signal 
• Assume:  the  message  signal  fully  loads  the  quantizer: 

11 2 2n nm     (8.1)

• SNR  at  the  quantizer  output:

2 2
2pm     (8.1)

22
12

12/ 





PP
P
PSNR

N

S
o
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SNRSNR
• From (8.1)

2
2

1 2

2 4
2 2 2

p p p
n n n

m m m
     

• 
•

I dB

2
2 24

22

12 3 2 n
o mp p

n

P PSNR
m

  (8.2)

• In dB, 2

2
10 10 2

310log (2 ) 10logn
o

p

PSNR
m

 
    

 
(dB)

10 10 2

320 log 2 10log

p

p

Pn
m

 
 

    
 

10 2

36 10log

p

p

Pn
m

 
 

    
 

(dB)

• Hence, each extra bit in the encoder adds 6 dB to the output SNR 
of the quantizer.

p 
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q
• Recognize the tradeoff between SNR and n (i.e., rate, or bandwidth).



ExampleExample
• Sinusoidal  message  signal: m(t) = Am cos(2 fmt).
• Average signal power:Average  signal  power: 

2

2
mAP

• Maximum  signal  value:  mp = Am.
• Substitute into (8 2):• Substitute  into  (8.2): 

2
2 2

2

3 32 2
2 2

n nm
o

ASNR
A

 

• In dB
2 2mA

6 1 8SNR n (dB) dB
• Audio  CDs:  n = 16 SNR > 90  dB 

6 1.8oSNR n (dB) dB
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PulsePulse--Coded Modulation (PCM)Coded Modulation (PCM)

• Sample  the  message  signal  above  the  Nyquist  
frequencyfrequency 

• Quantize  the  amplitude  of  each  sample 
• Encode the discrete amplitudes into a binary• Encode  the  discrete  amplitudes  into  a  binary  

codeword 
• Caution: PCM isn’t modulation in the usual sense; it’s a
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Caution: PCM isn t modulation in the usual sense; it s a 
type of Analog-to-Digital Conversion.



The  PCM  ProcessThe  PCM  Process
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Problem Problem With Uniform QuantizationWith Uniform Quantization
• Problem: the output SNR is adversely affected by peak to 

average power ratio.g p
• Typically small signal amplitudes occur more often than 

large signal amplitudes.
– The signal does not use the entire range of quantization levels 

available with equal probabilities. 
Small amplitudes are not represented as well as large amplitudes– Small amplitudes are not represented as well as large amplitudes, 
as they are more susceptible to quantization noise.
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Solution: Nonuniform quantization Solution: Nonuniform quantization 
• Nonuniform quantization uses quantization levels of 

variable spacing, denser at small signal amplitudes, p g, g p ,
broader at large amplitudes. 

if ifuniform nonuniform

quantized quantized

131



Companding Companding = Compressing + Expanding= Compressing + Expanding
• A  practical  (and equivalent) solution  to  nonuniform  quantization:

– Compress  the  signal  first 
– Quantize  it  (using a uniform quantizer)
– Transmit  it 

E d it– Expand  it 
• Companding is the corresponding to pre-emphasis and de-emphasis 

scheme used for FM.
• Predistort a message signal in order to achieve better performance in 

the presence of noise, and then remove the distortion at the receiver.
Th t SNR i bt i d ith di d d th t• The exact SNR gain obtained with companding depends on the exact 
form of the compression used.

• With proper companding, the output SNR can be made insensitive to p p p g, p
peak to average power ratio.
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µµ--Law vs. ALaw vs. A--LawLaw

(a) µ-law used in North America and Japan (b) A-law used in most countries
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(a) µ-law used in North America and Japan, (b) A-law used in most countries 
of the world. Typical values in practice (T1/E1): µ = 255, A = 87.6.



Applications of PCM & VariantsApplications of PCM & Variants
• Speech:

– PCM: The voice signal is sampled at 8 kHz, quantized into 256 g p , q
levels (8 bits). Thus, a telephone PCM signal requires 64 kbps. 

• need to reduce bandwidth requirements
DPCM (diff ti l PCM) ti th diff b t– DPCM (differential PCM): quantize the difference between 
consecutive samples; can save 8 to 16 kbps. ADPCM (Adaptive 
DPCM) can go further down to 32 kbps.

– Delta modulation: 1-bit DPCM with oversampling; has even lower 
symbol rate (e.g., 24 kbps).

• Audio CD: 16 bit PCM at 44 1 kHz sampling rate• Audio CD: 16-bit PCM at 44.1 kHz sampling rate.
• MPEG audio coding: 16-bit PCM at 48 kHz sampling rate 

compressed to a rate as low as 16 kbpscompressed to a rate as low as 16 kbps.
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DemoDemo
• Music playing in Windows Sound Recorder
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SummarySummary
• Digitization of signals requires

– Sampling: a signal of bandwidth W is sampled at the Nyquist p g g p yq
frequency 2W.

– Quantization: the link between analog waveforms and digital 
representationrepresentation.

• SNR (under high-resolution assumption)

36 10l PSNR
 
 (dB) (dB)

• Companding can improve SNR.

10 26 10logo
p

SNR n
m

    
 

(dB) (dB)

• PCM is a common method of representing audio signals.
– In a strict sense, “pulse coded modulation” is in fact a (crude) 

source coding technique (i e method of digitally representingsource coding technique (i.e, method of digitally representing 
analog information).

– There are more advanced source coding (compression) 
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Dr. Cong Ling

Department of Electrical and Electronic Engineering

137



Outline Outline 
• Line coding

• Performance of baseband 
digital transmission
– Model
– Bit error rate

• References
– Notes of Communication 

Systems, Chap. 4.4
– Haykin & Moher, Communication 

Systems, 5th ed., Chap. 8y , , p
– Lathi, Modern Digital and Analog 

Communication Systems, 3rd ed., 
Chap. 7
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Line  Coding Line  Coding 
• The bits of PCM, DPCM etc need to be converted into 

some electrical signals.g

• Line coding encodes the bit stream for transmissionLine coding encodes the bit stream for transmission 
through a line, or a cable.

• Line coding was used former to the wide spread 
application of channel coding and modulation techniques.

• Nowadays, it is used for communications between the 
CPU and peripherals, and for short-distance baseband 
communications, such as the Ethernet.
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Line CodesLine Codes

Unipolar nonreturn-to-zero 
(NRZ) signaling (on-off 
signaling)

Polar NRZ signaling

Unipolar Return-to-zero (RZ) 
signaling

Bipolar RZ signaling

Manchester code
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Analog and Digital CommunicationsAnalog and Digital Communications
• Different goals between analog and digital communication 

systems:y
– Analog communication systems: to reproduce the transmitted 

waveform accurately. Use signal to noise ratio to assess the 
quality of the systemquality of the system

– Digital communication systems: the transmitted symbol to be 
identified correctly by the receiver Use the probability of error of 
the receiver to assess the quality of the system 
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Model of Binary Baseband Model of Binary Baseband 
C i ti S tC i ti S tCommunication  System Communication  System 

T
Lowpass 

filter
Lowpass 

filter

T

T

n(t)n(t) T

• We only consider binary PCM with on-off signaling:  0 → 0
and 1 → A with bit duration T

n(t)n(t) T

and  1 → A with bit duration Tb.
• Assume:

– AWGN channel: The channel noise is additive white Gaussian, ,
with a double-sided PSD of N0/2.

– The  LPF  is  an  ideal  filter  with  unit  gain  on  [−W, W ].
– The signal passes through the LPF without distortion
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– The signal passes through the LPF without distortion 
(approximately).



Distribution of NoiseDistribution of Noise
• Effect of additive noise on digital transmission: at the 

receiver, symbol 1 may be mistaken for 0, and vice versa. , y y ,
bit  errors

• What  is  the  probability  of  such  an  error?
• After  the  LPF,  the  predetection  signal  is

y(t) = s(t) + n(t)
– s(t):  the  binary-valued  function  (either  0  or A  volts)
– n(t):  additive white Gaussian noise with zero mean and variance  

WNdfN
W2 2/

• Reminder: A sample value N of n(t) is a Gaussian random 
variable drawn from a probability density function (the

WNdfN
W 00

2 2/ 

variable drawn from a probability density function (the 
normal distribution): 

2
21 n 
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2
2

1( ) exp (0, )
22N
np n N 
 

 
   

 



DecisionDecision
• Y:  a  sample  value  of y(t)
• If a symbol 0 were transmitted: y(t) = n(t)If a symbol 0 were transmitted: y(t)  n(t) 

– Y will have a PDF of N (0, σ2)

• If a symbol 1 were transmitted: y(t) = A + n(t)If a symbol 1 were transmitted: y(t)  A  n(t) 
– Y will have a PDF of N (A, σ2)

• Use  as  decision  threshold  T :  
– if   Y  < T, choose  symbol  0 
– if   Y  > T, choose  symbol  1
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ErrorsErrors
• Two  cases  of  decision  error:

– (i) a  symbol  0  was  transmitted,  but  a  symbol  1  was  chosen( ) y , y
– (ii) a  symbol  1  was  transmitted,  but  a  symbol  0  was  chosen

Probability density functions for binary data transmission in noise: 
(a) symbol 0 transmitted, and (b) symbol 1 transmitted. Here T = A/2.
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Case (i)Case (i)
• Probability  of  (i)  occurring  = (Probability of an error, 

given symbol 0 was transmitted) × (Probability of a 0 to g y ) ( y
be transmitted in the first place):

p(i) = Pe0 × p0
where:
– p0: the a priori probability of transmitting a symbol 0

P : the conditional probability of error given that symbol 0 was– Pe0: the conditional probability of error, given that symbol 0 was
transmitted:


  n21













Te dnnP 20 2
exp

2
1


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Case (ii)Case (ii)
• Probability  of  (ii)  occurring  = (Probability of an error, 

given symbol 1 was transmitted) × (Probability of a 1 to g y ) ( y
be transmitted in the first place):

p(ii) = Pe1 × p1
where:
– p1: the a priori probability of  transmitting a symbol 1

P : the conditional probability of error given that symbol 0 was– Pe1: the conditional probability of error, given that symbol 0 was 
transmitted:

 



 T An 2)(1

  






 


T

e dnAnP 21 2
)(exp

2
1


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Total Error ProbabilityTotal Error Probability
• Total  error  probability:  

( )P T ( ) ( )

1 1 1 0

( )

(1 )
e i ii

e e

P T p p

p P p P

 

  

   2 2

1 12 2

1 ( ) 1exp (1 ) exp
2 22 2

T

T

n A np dn p dn
    





   
       

   
 

• Choose  T so  that  Pe(T) is  minimum: 
)(TdP 0)(


dT
TdPe
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DerivationDerivation
• Leibnitz  rule  of  differentiating  an  integral  with  respect  

to  a  parameter: if p

• then

( )

( )
( ) ( ; )

b

a
I f x dx




  

then 

 



)(

)(

);());(()());(()()( 

 









 b

a
dxxfaf

d
dabf

d
db

d
dI

• Therefore
1)(1)( 22











  TATTdP 0

2
exp

2
1)1(

2
)(exp

2
1)(

2121 



















TpATp

dT
TdPe

2 2( )T T A 2 2
1

2
1

2 2 2

( )exp
1 2

2 (2 )

p T T A
p

T T A TA A T A


  

    
   
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Optimum ThresholdOptimum Threshold

21 1
2

(2 )ln 2 ln (2 )
1 2 1

p pA T A A T A
      2

1 1
2 2

1 1

1 2 1

2 ln 2 ln
1 1 2

p p

p p AT A T
A p A p



 

 

      

• Equi-probable  symbols  (p1 = p0 = 1 − p1) T  = A/2. 
F i b bl b l it b h th t P

1 11 1 2A p A p 

• For  equi-probable  symbols,  it  can  be  shown  that  Pe0 = 
Pe1.

• Probability of total error:• Probability  of  total  error:  

( ) ( ) 0 0 1 1 0 1e i ii e e e eP p p p P p P P P     

since  p0 = p1 = 1/2,  and Pe0 = Pe1.
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Calculation  of  Calculation  of  PPee

• Define  a  new  variable  of  integration

ddddn 1

– When n = A/2, z = A/(2σ).

dzdndndznz 



1

When  n  A/2,  z  A/(2σ).
– When  n = ∞,  z = ∞. 

• Then
2 /2

0 /(2 )

1
2

z
e A

P e dz
  

2

0 /(2 )

/2

/(2 )

2
1
2

e A

z

A
e dz





 


 




• We  may  express  Pe0 in  terms  of  the  Q-function:  

/(2 )2 A  

21 t  


• Then:

1( ) exp
22 x

tQ x dt


 
  

 


 A
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ExampleExample
• Example  1:  A/σ = 7.4 Pe = 10−4

• For a transmission rate is 105 bits/sec there will be anFor a transmission rate is 10 bits/sec, there will be an 
error every 0.1 seconds

• Example 2: A/σ = 11.2 Pe = 10−8Example  2:  A/σ  11.2 Pe  10
• For a transmission rate is 105 bits/sec, there will be an 

error every 17 minsy

• A/σ = 7.4: Corresponds to 20 log10(7.4) = 17.4 dBp g10( )
• A/σ = 11.2: Corresponds to 20 log10(11.2) = 21 dB
• Enormous increase in reliability by a relatively small y y y

increase in SNR (if that is affordable). 
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Probability of Bit ErrorProbability of Bit Erroryy
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QQ--function function 
• Upper  bounds  and  good  

approximations:  pp

0,1)( 2/2

  xexQ x

– which becomes  tighter  for  

,
2

)(
x

Q


g
large  x, and  

1 2

0,
2
1)( 2/2

  xexQ x

– which is a  better  upper  
bound  for  small  x.
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Applications to Ethernet and DSLApplications to Ethernet and DSL
• 100BASE-TX 

– One of the dominant forms of fast Ethernet, transmitting up to 100 , g p
Mbps over twisted pair.

– The link is a maximum of 100 meters in length.
Li d NRZ NRZ I t MLT 3– Line codes: NRZ  NRZ Invert  MLT-3.

• Digital subscriber line (DSL)
Broadband over twist pair– Broadband over twist pair.

– Line code 2B1Q achieved bit error rate of 10-7 at 160 kbps.
– ADSL and VDSL adopt discrete multitone modulation (DMT) for p ( )

higher data rates.
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Outline Outline 

• ASK and bit error rate• ASK and bit error rate

• FSK and bit error rate• FSK and bit error rate 

• PSK and bit error rate• PSK and bit error rate

• References• References
– Notes of Communication Systems, Chap. 4.5
– Haykin & Moher, Communication Systems, 5th ed., Chap. 9Haykin & Moher, Communication Systems, 5th ed., Chap. 9
– Lathi, Modern Digital and Analog Communication Systems, 

3rd ed., Chap. 13
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Digital ModulationDigital Modulation
• Three Basic Forms of Signaling Binary Information

(a) Amplitude-shift 
keying (ASK). 

(b) Phase-shift keying 
(PSK). 

(c) Frequency shift(c) Frequency-shift 
keying (FSK). 
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DemodulationDemodulation

• Coherent  (synchronous) demodulation/detection
– Use  a  BPF  to  reject  out-of-band  noise
– Multiply the incoming waveform with a cosine of the carrier 

frequencyfrequency
– Use  a  LPF
– Requires carrier regeneration (both frequency and phase q g ( q y p

synchronization by using a phase-lock loop)

• Noncoherent demodulation (envelope detection etc.)
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– Makes no explicit efforts to estimate the phase



ASKASK
• Amplitude  shift  keying  (ASK)  =  on-off  keying  (OOK)

s0(t)   =   0 0( )
s1(t)   = A cos(2 fct)

or s(t)    = A(t) cos(2fct),       A(t) {0, A} 
• Coherent detection

• Assume an ideal band-pass filter with unit gain on [fc−W, fc
+W]. For a practical band-pass filter, 2W should be 
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interpreted as the equivalent bandwidth.



Coherent DemodulationCoherent Demodulation
• Pre-detection  signal: 

( ) ( ) ( )( ) ( ) ( )
cos(2 ) ( ) cos(2 ) ( )sin(2 )c c c s c

x t s t n t
A f t n t f t n t f t  

 
  

• After multiplication with 2cos(2 f t):

[ ( ) ( )]cos(2 ) ( )sin(2 )c c s cA t n t f t n t f t   

• After  multiplication  with  2cos(2 fct):
2( ) [ ( ) ( )]2cos (2 ) ( )2sin(2 )cos(2 )c c s c cy t A t n t f t n t f t f t    

• After low pass filtering:

[ ( ) ( )](1 cos(4 )) ( )sin(4 )c c s cA t n t f t n t f t    

• After  low-pass  filtering:

( ) ( ) ( )cy t A t n t 
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Bit Error RateBit Error Rate
• Reminder: The in-phase noise component nc(t) has the 

same variance as the original band-pass noise n(t)g p ( )
– The received signal is identical to that for baseband digital 

transmission 
Th l l f ill h PDF th t id ti l t)(~ t– The sample values of          will have PDFs that are identical to 
those of the baseband case 

• For ASK the statistics of the receiver signal are identical to

)(ty

For ASK the statistics of the receiver signal are identical to 
those of a baseband system 

• The probability of error for ASK is the same as for thee p obab y o e o o S s e sa e as o e
baseband case

• Assume equiprobable transmission of 0s and 1s.q p
• Then the decision threshold must be A/2 and the 

probability of error is given by: 




 AQP
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PSKPSK
• Phase  shift  keying  (PSK)

s(t) = A(t) cos(2 fct),       A(t) {−A, A} 
U h t d t ti i t t ll t th• Use coherent detection again, to eventually get the 
detection signal: 

( ) ( ) ( )y t A t n t 

• Probability density functions for PSK for equiprobable 0s 
and 1s in noise (use threshold 0 for detection):

( ) ( ) ( )cy t A t n t 

and 1s in noise (use  threshold  0 for detection): 
– (a): symbol 0 transmitted
– (b): symbol 1 transmitted( ) y
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AnalysisAnalysis
• Conditional error probabilities:

21 ( )exp n AP dn
  

  0 20

20

exp
22

1 ( )exp

eP dn

n AP dn

 
  

 
 

  





• In the first set 0n n A dn dn n n A       and when

1 2exp
22eP dn
 

  
 



• In the first set 0,n n A dn dn n n A     and when

ndnP
Ae

~
2

~
exp

2
1

2

2

0 














• In the second set 

22  

( )
0 :

n n A n A dn dn
n n A n n

        
 

 
 when and when0, , , :n n A n n     when and when

2 2

1 2 2

1 1exp ( 1) exp
2 22 2

A

e A

n nP dn dn




   
       

   
 

  
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Bit Error RateBit Error Rate
• So:  

dnnPPP 









2

exp1

• Change variable of integration to z ≡ n/σ dn = σdz

dnPPP
APSKeee  




 2,10 2

exp
2 

• Change  variable  of  integration  to  z ≡ n/σ dn =  σdz
and  when n = A, z  = A/σ.  Then:  







 AQdz 2/21

• Remember that







  

 

AQdzeP A
z

PSKe
2/

, 2
1

Remember that 

  dttxQ
x


 )2/exp(
2
1 2


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FSKFSK
• Frequency  Shift  Keying  (FSK)

s0(t)   = A cos(2 f0t), if  symbol  0  is  transmitted 0( ) ( f0 ), y
s1(t)   = A cos(2 f1t), if  symbol  1  is  transmitted 

• Symbol  recovery:
– Use two sets of coherent detectors, one operating at a frequency f0

and the other at f1.

Coherent FSK demodulation
y

Coherent FSK demodulation. 
The  two  BPF’s  are  non-
overlapping  in  frequency  
spectrumspectrum 
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OutputOutput
• Each  branch  =  an  ASK  detector 

A i if b l tA



+noise    if symbol present
LPF output on each branch = 

noise          if symbol not present

• n0(t): the noise output of the top branch
• n (t): the noise output of the bottom branch• n1(t): the noise output of the bottom branch  
• Each  of  these  noise  terms  has  identical  statistics  to  

n (t)nc(t).
• Output if a symbol 1 were transmitted

y = y1(t) = A + [n1(t) − n0(t)]y y1( ) [ 1( ) 0( )]
• Output if a symbol 0 were transmitted

y = y0(t) = − A + [n1(t) − n0(t)]
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Bit Error Rate for FSKBit Error Rate for FSK
• Set detection threshold  to  0  
• Difference from PSK: the noise term is now n1(t) − n0(t)Difference from PSK:  the  noise  term  is  now  n1(t)  n0(t).  

• The noises in the two channels are independent because• The noises in the two channels are independent because 
their spectra are non-overlapping.
– the proof is done in the problem sheet.p p
– the variances add.
– the noise variance has doubled!

• Replace  σ2 in  (172)  by  2σ2 (or  σ by  2 σ )









2,
AQP FSKe
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The Sum of Two R.V.The Sum of Two R.V.
• Noise is the sum or difference of two independent zero 

mean random variables:
– x1:  a  random  variable  with  variance σ1

2

– x2:  a  random  variables  with  variance σ2
2

• What  is  the  variance  of  y ≡ x1 ± x2?
• By  definition

2 2 2 2
1 2

2 2 2 2
1 1 2 2 1 1 2 2

{ } { } {( ) }

{ 2 } { } { } { }
y E y E y E x x

E x x x x E x E x x E x

    

     
• For  independent  variables:  E{x1x2} = E{x1}E{x2}
• For  zero-mean  random  variables:

E{x1} = E{x2} = 0 E{x1x2} = 0 
• So

2 2 2 2 2{ } { }E E
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Comparison  of  Three  Schemes Comparison  of  Three  Schemes 
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CommentComment
• To achieve the same error probability (fixed Pe):

• PSK can be reduced by 6 dB compared with a baseband 
or ASK system (a factor of 2 reduction in amplitude)or ASK system (a factor of 2 reduction in amplitude) 

• FSK can be reduced by 3 dB compared with a basebandFSK can be reduced by 3 dB compared with a baseband 
or ASK (a factor of 2 reduction in amplitude) 

• Caution: The comparison is based on peak SNR. In terms 
of average SNR, PSK only has a 3 dB improvement over 
ASK, and FSK has the same performance as ASK
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ExamplesExamples
• Consider binary PSK modulation. Assume the carrier 

amplitude A = 1 v, and noise standard deviation  = 1/3. p ,
Determine the bit error probability.
– Answer: Pe = 1.03  10-3.

• Now suppose the bit error probability is 10-5. Determine 
the value of A/.
– Answer: A/ = 4.3.
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Application: GMSKApplication: GMSK
• Gaussian minimum shift keying (GMSK), a special form of 

FSK preceded by Gaussian filtering, is used in GSM p y g,
(Global Systems for Mobile Communications), a leading 
cellular phone standard in the world.
– Also known as digital FM, built on some 

of FM-related advantages of AMPS, 
the first-generation analog system g g y
(30 KHz bandwidth).

– Binary data are passed through a 
Gaussian filter to satisfy stringentGaussian filter to satisfy stringent 
requirements of out-of-band radiation.

– Minimum Shift Keying: its spacing between the two frequencies of 
FSK is minimum in a certain sense (see problem sheet).

– GMSK is allocated bandwidth of 200 kHz, shared among 32 users. 
This provides a (30/200)x32=4 8 times improvement over AMPS
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Dr. Cong Ling
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Outline Outline 

• Noncoherent demodulation of ASK

• Noncoherent demodulation of FSK

• Differential demodulation of DPSK

• References
– Haykin & Moher, Communication Systems, 5th ed., Chap. 9
– Lathi, Modern Digital and Analog Communication Systems, 

3 d d Ch 133rd ed., Chap. 13
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Noncoherent  Demodulation Noncoherent  Demodulation 
• Coherent demodulation assumes perfect synchronization.

– Needs a phase lock loop.p p

• However, accurate phase synchronization may be difficult 
in a dynamic channel.
– Phase synchronization error is due to varying propagation delays, 

frequency drift, instability of the local oscillator, effects of strong 
noisenoise ...

– Performance of coherent detection will degrade severely.

• When the carrier phase is unknown, one must rely on non-e e ca e p ase s u o , o e us e y o o
coherent detection.
– No provision is made for carrier phase recovery.

• The phase  is assumed to be uniformly distributed on [0, 
2].
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Noncoherent Demodulation of ASK Noncoherent Demodulation of ASK 

Bandpass Envelope Threshold
Signal 
plus Bandpass

filter
Envelope
detector

Threshold
device

plus 
noise 
in t = nTb

Decision

• Output of the BPF
y(t) = n(t) when 0 is senty(t)      n(t) when 0 is sent
y(t)   = n(t) + A cos(2 fct) when 1 is sent

• Recall

• Envelope
( ) ( ) cos(2 ) ( )sin(2 )c c s cn t n t f t n t f t  

p
2 2

2 2

( ) ( )

( ( )) ( ) 1

c sR n t n t

R A t t

  when 0 is sent

h i t
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Distribution of the EnvelopeDistribution of the Envelope
• When symbol 0 is sent, the envelope (that of the bandpass 

noise alone) has Rayleigh distribution  ) y g

0,)( )2/(
2

22

  rerrf r 


• When symbol 1 is sent, the envelope (that of a signal + 

bandpass noise) has Rician distribution  p )

0,)( 20
)2/()(

2

222







  rArIerrf Ar




• The first case dominates the error probability when 



p y
A/σ >> 1. 
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Rayleigh DistributionRayleigh Distribution
• Define a random variable                          where X and Y

are independent Gaussian with zero mean and variance

22 YXR 
2p

• R has Rayleigh distribution:
2 2/ (2 )( ) 0rrf r e r 2

( )( ) , 0r
Rf r e r


 

Normalized Rayleigh distribution

v = r/

fV(v) =  fR(r)

• Proving it requires change into polar coordinates:
2 2 1t YR X Y  
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DerivationDerivation
• Consider a small area dxdy = rdrd. One has

( ) ( ) ( )f r drd f x y dxdy f x y rdrd   
2 2

2

, , ,

2
2

( , ) ( , ) ( , )

1
2

R X Y X Y

x y

f r drd f x y dxdy f x y rdrd

e rdrd

  








 



• Hence 2 2 2

2 22 2
2 2( , )

x y r

R
r rf r e e 


 

  

22

• pdf of R:
, 2 2( , )

2 2Rf  

2

22
rr 



• pdf of 

22
2

, 20
( ) ( , ) , 0R R

rf r f r d e r


 
  

• pdf of 
,0

1( ) ( , ) , [0,2 ]
2Rf f r dr   




   
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Rician DistributionRician Distribution
• If X has nonzero mean A, R has Rician distribution:

2 2 2( )/(2 )A A

where 

2 2 2

2 2
( )/(2 )

0( ) ( ), 0r Ar Ar
Rf r e I r

 
  

2 cos1( ) xI x e d
  

is the modified zero-order Bessel function of the first kind.

1
0 2 0
( )I x e d 

Normalized Rician distribution

v = r/

a = A/

fV(v) =  fR(r)
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DerivationDerivation
• Similarly,

, ,( , ) ( , )R X Yf r drd f x y rdrd   
2 2

2
( )

2
2

1
2

x A y

e rdrd 


 




2 2

2
2 cos

2
2

1
2

r A Ar

e rdrd


 


 




• Hence
2 2

2
2 cos

2( )
r A Arrf




 



2

• pdf of R:

22
, 2( , )

2R
rf r e 
 

Bessel function• pdf of R:
2 2

2 2
cos

2 2
2

2

1( ) ( , ) , 0
r A Ar

R R
rf r f r d e e d r


 

   




   

Bessel function
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Error ProbabilityError Probability
• Let  the  threshold  be  A/2  for  simplicity.  
• The  error  probability  is  dominated  by  symbol  0,  and  p y y y ,

is  given  by  
2 2/(2 )

2/2

1
2

r
e A

rP e dr  

• The final expression

2/22 A 

Cf coherent demodulation

2 2/(8 )
, ,

1
2

A
e ASK noncoherentP e 

• Cf.  coherent  demodulation 
2 2/(8 )

, ,
1

2 2
A

e ASK Coherent
AP Q e 


   

 
• Noncoherent demodulation results in some performance 

degradation. Yet, for a large SNR, the performances of 

2 2 
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Noncoherent Demodulation of FSK Noncoherent Demodulation of FSK 

Bandpass 
filter 

centered at f1 R1

If R1 > R2,

choose 0

R1

choose 0

If R1 < R2,

choose 1

Bandpass 
filter 

centered at f2

R2
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Distribution of EnvelopeDistribution of Envelope
• When a symbol 1 is sent, outputs of the BPFs

y1(t)   =   n1(t)y1( ) 1( )
y2(t)   = n2(t) + A cos(2 f2t)

• Again, the first branch has Rayleigh distribution
2 2

1 1
21

/(2 )
1 1( ) , 0r r

Rf r e r


 

• while the second has Rice distribution
2 2 2( )/(2 )( ) ( ) 0r Arr Af I

• Note the envelopes R1 and R2 are statistically independent.

2 22
2 22

( )/(2 )
2 0 2( ) ( ), 0r Arr A

Rf r e I r
 

  

p 1 2 y p
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Error  ProbabilityError  Probability
• Error  occurs  if  Rice  < Rayleigh

2 1( )eP P R R 
2 2 2 2 2

2 2 12 1
2 2 2

2

2 2 2 2 2
2 2 12 1

( )/(2 ) /(2 )
0 1 20

( )/(2 ) /(2 )

( )

( )

r Ar rr A r

r

r Ar rr A r

e I e drdr

I d d

 
  

 

    

   

  

 2 2 12 1
2 2 2

2

2 2 2
2 22
2 2

( )/( ) /( )
0 1 20

(2 )/(2 )
0 20

( )

( )

r

r Arr A

e I e drdr

e I dr

 
  


 

  





 



• Observe the integrand is a Rician density

2 2 2 2 2

2
/(4 ) ( )/(2 )1

02 (A xx xe e I   


   2 20
) 2 , / 2dx x r A





 

• Observe the integrand is a Rician density
2 2/(4 )

, ,
1
2

A
e FSK noncoherentP e 

• Cf.  coherent  demodulation

2

2 2/( )1A 
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DPSK:  Differential  PSK DPSK:  Differential  PSK 
• It is impossible to demodulate PSK with an envelop 

detector, since PSK signals have the same frequency and , g q y
amplitude.

• We can demodulate PSK differentially, where phase 
reference is provided by a delayed version of the signal in 
the previous interval.

• Differential encoding is essential: bn = bn−1  an, where an, 
bn 1. 

input
bn

DPSK 
signal

Delay Tb cos(ct)

an bn-1
signal
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Differential  Demodulation Differential  Demodulation 
signal 
plus 
noise

Bandpass
filter

Lowpass
filter

Threshold
device

D i i

Delay Tb

noise Decision 
on an

• Computing the error probability is cumbersome but 
fortunately the final expression is simple:

)2/(
,

22

2
1 A

DPSKe eP 

– The derivation can be found in Haykin, Communication Systems, 
4th ed., Chap. 6.

– Performance is degraded in comparison to coherent PSK.Performance is degraded in comparison to coherent PSK.

• Cf.  coherent  demodulation 
)2/( 221 AeAQP 




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Illustration of DPSKIllustration of DPSK

Information symbols {an} 1 -1 -1 1 -1 -1 1 1

{bn-1} 1 1 -1 1 1 -1 1 1

Differentially encoded 
sequence {bn}

1 1 -1 1 1 -1 1 1 1

Transmitted phase 
(radians) 0 0  0 0  0 0 0

Output of lowpass filterOutput of lowpass filter 
(polarity) + – – + – – + +

Decision 1 -1 -1 1 -1 -1 1 1ec s o

Note: The symbol 1 is inserted at the beginning of the differentially encoded 
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Summary and ComparisonSummary and Comparison
Scheme Bit Error Rate

Noncoherent 
ASK, FSK

Coherent ASK Q(A/2)

Coherent FSK Q(A/2)

ASK, FSK

Coherent 
ASK, FSK

Coherent PSK Q(A/)

Noncoherent ½ exp( A2/82)
Coherent PSK

Noncoherent 
ASK

½ exp(-A /8 )

Noncoherent ½ exp(-A2/42)
FSK

p( )

DPSK ½ exp(-A2/22)

Caution: ASK and FSK have the same bit 
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Conclusions Conclusions 
• Non-coherent demodulation retains the hierarchy of 

performance.p

• Non-coherent demodulation has error performance slightlyNon coherent demodulation has error performance slightly 
worse than coherent demodulation, but approaches 
coherent performance at high SNR.

• Non-coherent  demodulators  are  considerably  easier  to  
build. 
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Application: DPSKApplication: DPSK
• WLAN standard IEEE 802.11b
• Bluetooth2
• Digital audio broadcast (DAB): DPSK + OFDM (orthogonal 

frequency division multiplexing)
• Inmarsat (International Maritime Satellite Organization): 

now a London-based mobile satellite company
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Outline Outline 

• What is information theory?

• Entropy  
– Definition of information
– Entropy of a source

Source coding• Source  coding
– Source coding theorem
– Huffman coding

• References
N t f C i ti S t Ch 5 1 5 4– Notes of Communication Systems, Chap. 5.1-5.4

– Haykin & Moher, Communication Systems, 5th ed., Chap. 10
– Lathi, Modern Digital and Analog Communication Systems, 3rd ed., 
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Model of a Digital Communication System Model of a Digital Communication System 
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What is Information TheoryWhat is Information Theory
• C. E. Shannon, ”A mathematical theory of 

communication,” Bell System Technical , y
Journal, 1948.

• Two fundamental questions in 
communication theory:
– What is the ultimate limit on data compression?

f– What is the ultimate transmission rate of reliable 
communication over noisy channels?

• Shannon showed reliable (i e error-free)Shannon showed reliable (i.e., error free) 
communication is possible for all rates below 
channel capacity (using channel coding).

• Any source can be represented in bits at any 
rate above entropy (using source coding).
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What is Information?What is Information?
• Information:  any  new  knowledge  about  something
• How can we measure it?How  can  we  measure  it?
• Messages containing knowledge of a high probability of 

occurrence Not very informativeoccurrence Not  very  informative
• Messages containing knowledge of low probability of 

occurrence More informative
• A small change in the probability of a certain output should 

not change the information delivered by that output by a 
large amount.
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Definition Definition 
• The  amount  of  information  of  a  symbol  s  with 

probability p:  p y p
1( ) logI s
p



• Properties:
– p = 1 I(s) = 0: a symbol that is certain to occur contains no

p

p ( ) y
information.

– 0 ≤ p ≤ 1 0 ≤ I(s) ≤ ∞: the information measure is monotonic and 
non-negative.

– p = p1  p2 I(s) = I(p1) + I(p2): information is additive for
statistically independent events. 
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ExampleExample
• In communications, log base 2 is commonly used, 

resulting in unit bitg
• Example:   Two  symbols  with  equal  probability p1 = p2

=  0.5
• Each  symbol  represents  I(s) = log2(1/0.5) = 1 bit  of  

information. 

• In  summary: 2
1( ) logI s  bits

• Reminder:  From  logs  of  base  10  to  logs  of  base  2:

p

xxx 10
10

10
2 log32.3

2log
loglog 

200

10 2log



Discrete Memoryless SourceDiscrete Memoryless Source
• Suppose we have an information source emitting a 

sequence of symbols from a finite alphabet:q y p
S = {s1, s2, . . . , sK}

• Discrete memoryless source: The successive symbols 
are statistically independent (i.i.d.)

• Assume  that  each  symbol  has  a  probability  of  
occurrence 

 
K

pKkp 1thatsuch1 



k

kk pKkp
1

1that such,,...,1,
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Source  EntropySource  Entropy
• If  symbol  sk has  occurred,  then,  by  definition,  we  have  received   

psI log1log)( 
bits  of  information. 

k
k

k p
p

sI 22 loglog)( 

• The  expected  value  of  I(sk) over  the  source  alphabet


KK

IIE l)()}({

• Source entropy: the average amount of information per source





k

kk
k

kkk ppsIpsIE
1

2
1

log)()}({

• Source entropy: the average amount of information per source
symbol:


K

kk ppSH log)(

• Units:  bits / symbol.   





k

kk ppSH
1

2log)(
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Meaning of EntropyMeaning of Entropy
• What information about a source does its entropy give us?
• It is the amount of uncertainty before we receive itIt  is  the  amount  of  uncertainty before  we  receive  it.
• It tells us how many bits of information per symbol we 

expect to get on the average.expect to get on the average.

• Relation with thermodynamic entropyRelation with thermodynamic entropy
– In thermodynamics: entropy measures disorder and randomness;
– In information theory: entropy measures uncertainty. 
– Some argue that to obtain 1 bit information, the minimum energy 

needed is 10-23 Joules/Kelvin degree (extremely cheap!).
This may have implications on green computation– This may have implications on green computation.
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Example:  Entropy  of  a  Binary  SourceExample:  Entropy  of  a  Binary  Source
• s1:  occurs  with  probability p
• s0: occurs with probability 1 − ps0:  occurs  with  probability 1  p.
• Entropy  of  the  source:

( ) (1 ) l (1 ) l ( )H S H

– H(p) is referred to as the

2 2( ) (1 ) log (1 ) log ( )H S p p p p H p     

H(p) is referred to as the 
entropy function.

H
(p

)

Maximum  uncertainty  
when  p = 1/2. 
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Example: A  Three-Symbol  Alphabet
– A:  occurs  with  probability  0.7
– B:  occurs  with  probability  0.2
– C:  occurs  with  probability  0.1

• Source  entropy: 
)10(log10)20(log20)70(log70)(SH

lbits/symbo1571
322.31.0322.22.0515.07.0

)1.0(log1.0)2.0(log2.0)7.0(log7.0)( 222


SH

• How  can  we  encode  these  symbols  in  order  to  
transmit  them?   

lbits/symbo157.1

• We  need  2  bits/symbol if encoded as
A   =   00, B   =   01, C   =   10

• Entropy prediction: the average amount of information is 
only 1.157 bits per symbol.
W ti bit !
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Source  Coding  Theory Source  Coding  Theory 
• What is the minimum number of bits that are required to 

transmit a particular symbol?p y

• How can we encode symbols so that we achieve (or atHow can we encode symbols so that we achieve (or at 
least come arbitrarily close to) this limit?

• Source encoding: concerned with minimizing the actual 
number of source bits that are transmitted to the user

• Channel encoding: concerned with introducing redundant 
bits to enable the receiver to detect and possibly correct 
errors that are introduced by the channel. 
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Average  Codeword  Length Average  Codeword  Length 
• lk: the number of bits used to code the k-th symbol
• K: total number of symbolsK: total number of symbols
• pk:  the  probability  of  occurrence  of  symbol k
• Define the average codeword length:• Define  the  average  codeword  length:   


K

kklpL

• It represents the average number of bits per symbol in the 
source alphabet

k 1

source alphabet.
• An idea to reduce average codeword length: symbols that 

occur often should be encoded with short codewords; ;
symbols that occur rarely may be encoded using the long 
codewords.
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Minimum Codeword LengthMinimum Codeword Length
• What is the minimum codeword length for a particular 

alphabet of source symbols? p y
• In a system with 2 symbols that are equally likely: 

– Probability of each symbol to occur: p = 1/2
– Best  one  can  do:  encode  each  with  1  bit  only:  0  or  1

• In a system with n symbols that are equally likely: 
Probability of each symbol to occur: p = 1/n

• One needs L = log2 n = log2 1/p = − log2 p bits to represent 
the symbols. 
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The  General  Case The  General  Case 
• S = {s1, . . . , sK}: an  alphabet
• pk: the probability of symbol sk to occurpk p y y k
• N : the number of symbols generated
• We  expect  Npk occurrences  of  skk k
• Assume:

– The  source  is  memoryless
ll b l i d d t– all  symbols  are  independent 

– the  probability  of  occurrence  of  a  typical sequence  SN is: 
1 2( ) KNp Np Npp S p p p   

• All  such  typical  sequences  of  N symbols  are  equally  
lik l

1 2( ) ...N Kp S p p p   

likely   
• All other compositions are extremely unlikely to occur as N
→∞ (Shannon 1948)

209

→ ∞ (Shannon, 1948).



Source  Coding  TheoremSource  Coding  Theorem
• The number of bits required to represent a typical 

sequence SN isq N
1 2

2 2 1 2
1log log ( ... )

( )
l l l

KNp Np Np
N K

N

L p p p
p S

N N N

     

1 2 1 2 2 2 2

2
1

log log ... log

log ( )

K K
K

k k
k

Np p Np p Np p

N p p NH S

    

  

• Average  length  for  one  symbol:   
1k

( )NLL H S
N

  bits / symbol

• Given a discrete memoryless source of entropy H(S), 
the average codeword length for any source coding g g y g
scheme is bounded by H(S):

)(SHL 
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Huffman CodingHuffman Coding
• How  one  can  design  an  efficient  source  coding  

algorithm? 
• Use  Huffman  Coding (among  other  algorithms) 
• It  yields  the  shortest  average  codeword  length.
• Basic idea: choose codeword lengths so that more-

probable sequences have shorter codewords
• Huffman Code construction• Huffman Code construction

– Sort the source symbols in order of decreasing probability.
– Take the two smallest p(xi) and assign each a different bit (i.e., 0 p( i) g (

or 1). Then merge into a single symbol.
– Repeat until only one symbol remains.

• It’s very easy to implement this algorithm in a• It s very easy to implement this algorithm in a 
microprocessor or computer.

• Used in JPEG, MP3…
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ExampleExample

Read diagram backwards
for codewords

• The  average  codeword  length: g g

(2 0.4) (2 0.2) (2 0.2) (3 0.1) (3 0.1) 2.2L           

• More than the entropy H(S) = 2.12 bits per symbol.
Room  for  further  improvement.
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Application: File CompressionApplication: File Compression
• A drawback of Huffman coding is that it requires 

knowledge of a probabilistic model, which is not always g p , y
available a prior.

• Lempel-Ziv coding overcomes this practical limitation and 
has become the standard algorithm for file compression.
– compress, gzip, GIF, TIFF,

PDF modemPDF, modem…
– A text file can typically be 

compressed to half of its 
original size.
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SummarySummary
• The entropy of a discrete memoryless information source

K

• Entropy function (entropy of a binary memoryless source)





K

k
kk ppSH

1
2log)(

• Entropy function (entropy of a binary memoryless source)

2 2( ) (1 ) log (1 ) log ( )H S p p p p H p     

• Source coding theorem: The minimum average codeword 
length for any source coding scheme is H(S) for a discretelength for any source coding scheme is H(S) for a discrete 
memoryless source.

• Huffman coding: An efficient source coding algorithm.
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Outline Outline 

• Channel  capacity
– Channel coding theorem– Channel coding theorem
– Shannon formula   

• Comparison with 
practical systems  p y

• References
– Notes of Communication Systems, Chap. 5.5-5.6
– Haykin & Moher, Communication Systems, 5th ed., Chap. 10
– Lathi, Modern Digital and Analog Communication Systems, 

3rd ed., Chap. 15 
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Channel Coding TheoremChannel Coding Theorem
• Shannon, “A mathematical theory of communication,” 

1948
• For any channel, there exists an information capacity C

(whose calculation is beyond the scope of this course).

• If the transmission rate R ≤ C, then there exists a 
coding scheme such that the output of the source cancoding scheme such that the output of the source can 
be transmitted over a noisy channel with an arbitrarily 
small probability of error. Conversely, it is not 

ibl t t it ith t if R Cpossible to transmit messages without error if R > C.

• Important implication:• Important  implication:
– The basic limitation due to noise in a communication channel is not 

on the reliability of communication, but rather, on the speed of 
i ti
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Shannon  Capacity  FormulaShannon  Capacity  Formula
• For an additive white Gaussian noise (AWGN) channel, 

the channel capacity is   p y

 2 2
0

log 1 log 1 PC B B
N B

 
    

 
SNR bps

– B:  the bandwidth of the channel
– P:  the average signal power at the receiver
– N0: the single-sided PSD of noise

• Important implication: We can communicate error free 
t C bit dup to C bits per second.

• How  can  we  achieve  this  rate?
D i ti d t t– Design power error correcting codes to correct as many errors as 
possible (the next two lectures).

– Use the ideal modulation scheme that does not lose information in 
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Shannon LimitShannon Limit
• Tradeoff between power and bandwidth: to get the same 

target capacity C, one may

Capacity boundary

Unachievable 
region

g p y , y
– Increase power, decrease bandwidth;
– Decrease power, increase bandwidth.

Achievable region

B

• What’s the minimum power to 
send 1 bps (i.e., C = 1 bps)?

P/N0 (dB)

1/
B1/

1/

0

2 1(2 1)
1/

B
BP B

N B


  

1/ 2

2
0

2 ln 2( )lim lim ln 2

0 693 1 6 dB

B

B B

P B
N B



 


  



• This is the ultimate limit of green communications.

0.693 1.6 dB  
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ExampleExample
• A voice-grade channel of the telephone network has a 

bandwidth of 3.4 kHz. 
– (a) Calculate the capacity for a SNR of 30 dB.
– (b) Calculate the SNR required to support a rate of 4800 bps.

• Answer:
• (a) 30 dB  SNR = 1000

2

2

log (1 )
3.4 log (1 1000)

C B SNR 
  

• (b) 

2g ( )
33.9 kbps

/C B/

4.8/3.4

2 1
2 1
1 66 2 2 dB

C BSNR  

 
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General  Model  of  a  Modulated  General  Model  of  a  Modulated  
Communication SystemCommunication SystemCommunication  SystemCommunication  System
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Input/Output SNRInput/Output SNR
• The maximum rate at which information may arrive at the 

receiver is 
)1(l SC

– SNRin: the predetection signal-to-noise ratio at the input to the
demodulator

)1(log2 inin SNRBC 

demodulator.
• The maximum rate at which information can leave the 

receiver is 

– SNRo:  the  SNR  at  the  output  of  the  postdetection  filter. 
)1(log2 oo SNRWC 

• For  the  ideal  modulation  scheme:
Cin = Co 1 + SNRo = [1 + SNRin]B/W

• For high SNR• For  high  SNR,
SNRo  SNRin

B/W

• It seems that spreading the bandwidth would make the 
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A More Elaborate AnalysisA More Elaborate Analysis
• If the channel noise has a double-sided white PSD of N0/2

the average noise power at the demodulator will be N0B. g p 0

• If  the  signal  power  is  P :
PWPSNRi 

: the baseband SNR
WNBBN

SNRin
00

0
baseband

P SNR
N W



• Increasing B will reduce SNRin, and thus
0

2 2log (1 ) log 1
/
baseband

o
SNRW SNR B

B W
    
 

• Output  SNR  of  an ideal communication  system: 

2 2g ( ) g
/o B W 

 

/

1 1
/

/

B W
baseband

o

SNR

SNRSNR
B W

    
  1lim 1

x

x
e

x

   
 
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SNR vs. BandwidthSNR vs. Bandwidth

B/W=12

B/W=2dB
)

B/W 2

S
N

R
o

(d

B/W=1

SNR (dB)
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Implications to Analog SystemsImplications to Analog Systems
• A bandwidth spreading ratio of B/W=1 corresponds to both 

SSB and baseband.   
• A bandwidth spreading ratio of B/W=2 corresponds to 

DSB and AM (the ideal system would 
have )4/2SNRSNRhave                                ). 

• A bandwidth spreading ratio of B/W=12 corresponds to 
commercial FM broadcasting and AM (the ideal system 

4/2
baseo SNRSNR 

g ( y
would have                          ).

• SSB and baseband systems provide noise performance 
id ti l t th id l ( hi h i t i i l)

baseSNR
o eSNR 

identical to the ideal (which is trivial).
• DSB has a worse performance because of its additional 

bandwidth requirementsbandwidth requirements.
• FM systems only come close to the ideal system near 

threshold.
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Noise  Performance  of  Analog  Noise  Performance  of  Analog  
Communication SystemsCommunication SystemsCommunication  Systems Communication  Systems 
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Discussion Discussion 
• Known analogue communication systems do not achieve 

the ideal performance in general.p g
• Something  must  be  missing  with  analogue  

communications.
• Similarly, it can be shown that simple digital modulation 

schemes cannot achieve capacity too.
• One must resort to digital communications and coding to 

approach the capacity.
• The idea of tradeoff between bandwidth and SNR is useful 

in spread-spectrum communications (CDMA, 3G mobile 
communications) and ultra widebandcommunications) and ultra wideband.
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Outline Outline 
• Introduction

• Block codes 

• Error detection and 
correction

• Generator matrix and 
parity-check matrixparity check matrix 

• References
– Haykin & Moher, Communication Systems, 5th ed., Chap. 10
– Lathi, Modern Digital and Analog Communication Systems, 

3rd ed Chap 16
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Taxonomy of CodingTaxonomy of Coding
Error 
Correction
Coding

Error 
Detection
Coding

- used
in ARQ
as in TCP/IP
feedback channel

= FEC
- no feedback

channel
- feedback channel
- retransmissions

Cryptography
(Ciphering)

Source
Coding

Line CodingError Control 
Coding

- Makes bits - Strives to - for baseband- Makes bits
equally 
probable

- Strives to
utilize
channel
capacity by
adding

- for baseband 
communications

Compression
Coding

- Redundancy removal:

adding 
extra bits
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y
- Destructive (jpeg, mpeg)
- Non-destructive (zip)

FEC: Forward Error Correction

ARQ: Automatic Repeat Request



Block vs. Convolutional CodesBlock vs. Convolutional Codes

k input bits

• Block codes
k input bits

(n,k) 
encoder

k bits n bits

n output bits

i bi

– Output of n bits depends only on the k input bits
• Convolutional codes

input bit
– Each source bit influences n(L+1) output bits
– L is the memory length

Lik l ti i li filt

n(L+1) output bits

– Like convolution in a linear filter

k = 1 n = 2 L = 2
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Noise and ErrorsNoise and Errors
• Noise can corrupt the information that we wish to transmit.

• Generally corruption of a signal is a bad thing that should 
be avoided, if possible.be avoided, if possible. 

• Different systems will generally require different levels ofDifferent systems will generally require different levels of 
protection against errors due to noise.

• Consequently, a number of different techniques have been 
developed to detect and correct different types and 
numbers of errors. 
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Channel ModelChannel Model

• We can measure the effect of noise in different ways. 
The most common is to specify an error probability pThe most common is to specify an error probability, p. 
Consider the case of a Binary Symmetric Channel
with noise.with noise.

p
1-p

1 1

p p

1-p
0 0

• All examples considered here will be for error

0 0

• All examples considered here will be for error 
probabilities that are symmetric, stationary and 
statistically independent. 
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Simple Error ChecksSimple Error Checks
• If the error probability is small and the information is fairly fault tolerant, 

it is possible to use simple methods to detect errors. 
• Repetition – Repeating each bit in the message

– If the two symbols in an adjacent pair are different, it is likely that an error 
has occurred.

– However, this is not very efficient (efficiency is halved).
– Repetition provides a means for error checking, but not for error correction. 

P it bit U f ‘ it bit’ t th d f th• Parity bit – Use of a ‘parity bit’ at the end of the message
– A parity bit is a single bit that corresponds to the sum of the other 

message bits (modulo 2).
– This allows any odd number of errors to be detected, but not even 

numbers.
– As with repetition, this technique only allows error checking, not error p , q y g,

correction.
– It is more efficient than simple repetition.
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Block Codes Block Codes 
• An important class of codes that can detect and correct 

some errors are block codes
• The first error-correcting block code was devised by 

Hamming around the same time as Shannon was working 
on the foundation of information theory
– Hamming codes are a particular class of linear block code

• Block codes
– Encode a series of symbols from the source, a ‘block’, into a 

longer string: codeword or code blocklonger string: codeword or code block
– Errors can be detected as the received coded block will not be 

one of the recognized, valid coded blocks
– Error correction: To “decode” and associate a corrupted block to a 

valid coded block by its proximity (as measured by the “Hamming 
distance”)
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Binary Fields and Vectors Binary Fields and Vectors 
• We need to discuss some of mathematics that will be needed. 
• Fortunately, we have restricted things to binary sources, so theFortunately, we have restricted things to binary sources, so the 

mathematics is relatively simple. 
• The binary alphabet A={0,1} is properly referred to as a Galois field 

with two elements denoted GF(2)with two elements, denoted GF(2). 
– Addition (XOR)

0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0 
– Multiplication (AND)

0 1 = 0 0 = 1 0 = 0, 1 1 = 1
– This is also referred to as Boolean arithmetic in Digital Electronics or– This is also referred to as Boolean arithmetic in Digital Electronics or 

modulo-2 arithmetic. 
• A message is built up from a number of binary fields, and forms a 

bi t th th l bi bbinary vector, rather than a larger binary number. 
– Hence,      101 ≠ 5 101={1}{0}{1}
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Example Example 

• Calculate the following examples of binary field arithmetic:Calculate the following examples of binary field arithmetic:
i. 01001 + 01110 
ii 10010  01110ii. 10010  01110 
iii. (1111+0011)  0011

• Answers
i 00111i. 00111 
ii. 00010 
iii 1100  0011 = 0000iii. 1100  0011 = 0000
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Hamming Distance Hamming Distance 
• Hamming Weight

– The Hamming weight of a binary vector, a (written as wH(a)), is the 
number of non zero elements that it containsnumber of non-zero elements that it contains. 

– Hence, 
001110011  has a Hamming weight of 5.g g
000000000  has a Hamming weight of 0.

• Hamming Distance 
– The Hamming Distance between two binary vectors, a and b, is 

written dH(a,b) , and is equal to the Hamming weight of their 
(Boolean) sum. ( )

dH(a,b) = wH(a+b)
– Hence, 01110011 and 10001011 have a Hamming distance of

dH = wH (01110011+10001011)
= wH (11111000) = 5 
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Linear Block Codes Linear Block Codes 
• A binary linear block code that takes block of k bits of 

source data and encodes them using n bits, is referred to 
as a (n, k) binary linear block code. 
– The ratio between the number of source bits and the number of 

bits used in the code R=k/n is referred to as the code ratebits used in the code, R=k/n, is referred to as the code rate.

• The most important feature of a linear block code
– Linearity: the Boolean sum of any codewords must be anotherLinearity: the Boolean sum of any codewords must be another 

codeword.
– This means that the set of code words forms a vector space, 

ithi hi h th ti l ti b d fi d dwithin which mathematical operations can be defined and 
performed. 
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Generator MatrixGenerator Matrix
• To construct a linear block code we define a matrix, the 

generator matrix G, that converts blocks of source 
b l i t l bl k di t d dsymbols into longer blocks corresponding to code words. 

• G is a k×n matrix (k rows, n columns), that takes a 
source block u (a binary vector of length k) to a codesource block u (a binary vector of length k), to a code 
word x (a binary vector of length n), 

x = u Gx = u G

u x
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Systematic Codes Systematic Codes 

k information bits   (n-k) parity-check bits

codeword

• Systematic codes: The first k bits will be the original 
source block.source block. 

• From linear algebra, a k×n matrix of linearly independent 
rows can always be written into the systematic form: y y

G = [Ik ×k ⋮ Pk ×(n −k )]
where Ik ×k is the k×k identity matrix, and Pk×(n−k) is a k ×k y , k×(n−k) 
k×(n−k) matrix of parity bits. 

• Every linear code is equivalent to a systematic code. 
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Example Example 
Given the generator matrix for a (7,4) systematic code

 1100001












0110100
1010010
1100001

G








 1111000
0110100

Calculate the code words for the following source blocks: 
i. 1010 [Answer: x = 1010101]
ii. 1101 [Answer: x = 1101001]
iii. 0010 [Answer: x = 0010110]
iv Calculate the Hamming distances between each pair of codeiv. Calculate the Hamming distances between each pair of code 

words generated in parts (i) to (iii), and compare them to the 
Hamming distances for the original source blocks. [Answer: 4, 
7 3 l th 3 4 1]
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Error Detection Error Detection 
• To determine the number of errors a particular code can detect and 

correct, we look at the minimum Hamming distance between any two 
d dcode words. 

• From linearity the zero vector must be a code word. 
• If we define the minimum distance between any two code words to beIf we define the minimum distance between any two code words to be 

dmin = min{dH(a,b), a,b C} = min{dH(0,a+b), a,b C}
= min{wH(c), c C, c≠0}

where C is the set of code words.
• The number of errors that can be detected is then (dmin–1), since dmin

errors can turn an input code word into a different but valid code worderrors can turn an input code word into a different but valid code word. 
Less than dmin errors will turn an input code word into a vector that is 
not a valid code word. 
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Error Correction Error Correction 

• The number t of errors that can be corrected is simply 
the number of errors that can be detected divided by twothe number of errors that can be detected divided by two 
and rounded down to the nearest integer, since any 
output vector with less than this number of errors will 
‘nearer’ to the input code word.

d 2 1 d < 2t
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Parity Check Matrix Parity Check Matrix 
• To decode a block coded vector, it is more complicated. 
• If the generator matrix is of the form

G = [Ik ×k ⋮ Pk ×(n −k )]
To check for errors, we define a new matrix, the parity check matrix, 
H. The parity check matrix is a (n-k)×n matrix that is defined so thatp y ( )
– It will produce a zero vector when no error in the received code 

vector x,
HT 0 (14 1)x·HT = 0 (14.1)

where HT is the transpose of H.
• To satisfy this condition it is sufficient to write the parity check matrixTo satisfy this condition, it is sufficient to write the parity check matrix 

in the form
H = [(Pk ×(n-k))T ⋮ I(n −k ) ×(n −k )]

• The minimum Hamming distance is equal to the smallest number of 
columns of H that are linearly dependent.
– This follows from the condition (14.1). See Haykin, Chap. 10 for proof.
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Syndrome Syndrome 
• If the received coded block y contains errors, then the 

product of the received block with the transpose of the 
parity check matrix will not be zero, 

y HT ≠ 0
• Writing y = x + e which is the sum of the original coded 

block x and the error e, we find that
y HT = e HT

• This value is referred to as the syndrome, s = y HT = e 
HTHT.

• The syndrome is a function of the error only, and contains 
the information required to isolate the position (or positions)the information required to isolate the position (or positions) 
of the error (or errors). 
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Syndrome DecodingSyndrome Decoding
• s is an (n-k) row vector, taking 2(n-k) -1 possible values (the 

zero vector corresponding to no error). p g )
• This means that it is necessary to calculate and store 2(n-k)

-1 syndromes as a look-up table to be able to pin-point the 
positions of the errors exactly. 

• Problem: this is impractical for large values of (n – k). 

Received 
t

Syndrome 

Parity-check
matrix H

Syndrome
table

vector y s

E DecodedError 
vector e

Decoded 
codword x
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SummarySummary
• A linear block code can be defined by a generator matrix 

G and the associated parity-check matrix H.p y
• Every linear block code is equivalent to a systematic code.
• The key parameter of a linear block code is the minimumThe key parameter of a linear block code is the minimum 

Hamming distance dmin:
– Up to dmin – 1 errors can be detected;
– Up to (dmin – 1)/2 errors can be corrected.

• Syndrome decoding: compute the syndrome and then find 
th ttthe error pattern.
– Only practical for short codes.
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Outline Outline 
• Hamming codes 

– A special type of cyclic codes that 
correct a single error

• Cyclic codes• Cyclic codes 
– Can correct more errors
– The most important class of block codesp
– Implementation takes advantage 

of polynomial multiplication/division

• References
– Haykin & Moher, Communication Systems, 5th ed., Chap. 10ay & o e , Co u cat o Syste s, 5t ed , C ap 0
– Lathi, Modern Digital and Analog Communication Systems, 

3rd ed., Chap. 16
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Hamming Codes Hamming Codes 
• Hamming codes are a class of linear block codes that 

can correct a single error. They satisfy the condition g y y
r = n – k = log2(n+1)  n = 2r – 1, k = 2r – 1 – r.

• From this expression, it is easy to see that the first few 
Hamming codes correspond to 

(n, k) = (7,4), (15,11), (31,26),…
• They are easy to construct and are simple to use. 

– For all Hamming codes, dmin = 3. 
– All (correctable) error vectors have unit Hamming weight, and the 

syndrome associated with an error in the i’th column of the vector 
is the i’th row of HT .

• Columns of H are binary representations of 1, …, n. 
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Syndrome TableSyndrome Table

s e

• For the (7,4) Hamming code, the parity check matrix is
0 1 1 1 1 0 0 

000 0000000

001 0000001
G t t i

1 0 1 1 0 1 0
1 1 0 1 0 0 1

H
 
   
  

010 0000010

100 0000100

• Generator matrix









1010010
1100001

G 111 0001000

110 0010000

101 0100000














1111000
0110100

G

101 0100000

011 1000000
• The corresponding syndrome table is:

Wh d d t i i d th d i l l t d d

THes 
• When a coded vector is received, the syndrome is calculated and any 

single error identified, and corrected by exchanging the relevant bit 
with the other binary value – However, problems can occur if there is 
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ExampleExample
• Consider the (7,4) Hamming code. If the code vector 

1000011 is sent while 1000001 and 1001100 are received, ,
decode the information bits.

• Answer:
– The first vector

s=(1000001)HT=(010)
e=(0000010)e=(0000010)
x=(1000001)+(0000010)=(1000011)
u=(1000)            correct (as there is one error)

– The second vector
s=(1001100)HT=(000)
error-free
x=(1001100)
u=(1001)            wrong (as there are 4 errors)
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Cyclic Codes Cyclic Codes 
• Cyclic codes are a subclass of linear block codes offering larger 

Hamming distances, thereby stronger error-correction capability. 
• Whereas the principal property of the simple linear block code is 

that the sum of any two code words is also a code word, the cyclic 
codes have an additional property: a cyclic shift of any code word p p y y y
is also a code word.

• A cyclic shift of a binary vector is defined by taking a vector of 
length nlength n, 

a = [a0, a1, …, an-1]
and rearranging the elements,g g

a = [an-1, a0, a1, …, an-2]
• A code is cyclic if:

(c0, c1, …, cn-1) C (cn-1, c0, …, cn-2) C 

254



Generator Matrices Generator Matrices 
• A cyclic code is still a linear block code, so all of the 

properties previously discussed hold for cyclic codes. p p p y y
• They are constructed by defining a generator matrix, and 

an associated parity check matrix and are decoded using 
syndromes in exactly the same way as the other linear 
block codes that we have discussed. 

• A generator matrix is defined in the same way as before, 
except that the rows are now cyclic shifts of one n-
dimensional basis vectordimensional basis vector.





 knggg 10 00














 knggg
G


10

00

00
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



 knggg  1000



EncodingEncoding
• The cyclic property leads to a very useful property: they can be 

represented simply (mathematically and in hardware) by polynomial 
operationsoperations. 

• We start by looking at the code word x generated by a source block 
u,

x = u G = [x0, x1,…, xn-1]
• With the generator matrix in the cyclic (non-systematic) form given in 

the previous slide the elements of the code words arethe previous slide, the elements of the code words are, 
x0    = u0g0

x1 = u0g1+ u1g01    0g1 1g0

…
xn-1 = uk-1gn-k

These elements take the general form,





1k

ilil gux
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Polynomial RepresentationPolynomial Representation
• Taking a binary vector x, it is possible to represent this as a 

polynomial in z (over the binary field)y ( y )
x = [ x0 , x1 ,… , xn−1 ] → x (z) = x0 zn−1 + x1 zn−2 +…+ xn−1

• Representing the original code word and the n-dimensional basis 
vector for the cyclic code as polynomialsvector for the cyclic code as polynomials, 

u = [u0 , u1 ,… , uk −1 ] → u (z) = u0 zk −1 + u1 zk −2 +…+uk −1

g = [g0 , g1,… , gn−k ,0,…,0] g [g0 , g1,… , gn−k ,0,…,0]
→ g (z) = g0 zn−k + g1zn−k−1 +…+ gn−k

• We notice that the product of these two polynomials is exactly the 
h l i l i f h di dsame as the polynomial representation of the corresponding code 

vector. 
Nonsystematic Encoding: x(z) = u(z) g(z)y g ( ) ( ) g( )

• This means that the problem of matrix-vector multiplication can be 
reduced to a problem of polynomial multiplication.
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AdvantageAdvantage

• The main advantage is that it simplifies the cyclic shift 
operation and thereby simplifies the hardwareoperation, and thereby simplifies the hardware 
implementation of the code considerably. 

• Multiplication of the code word by z shifts all of the• Multiplication of the code word by z shifts all of the 
coefficients along by one, and replacing the term (x0zn) 
by a term (x0z0), gives a cyclic shift. y ( 0 ) g y

• A simpler way to achieve the same result is to multiply 
the polynomial by z, divide by zn-1, and take the 
remainder term, which can be written as 

(z x(z)) mod(zn −1) 
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Parity Check Polynomials Parity Check Polynomials 
• One property important to cyclic codes is the ability to factorise 

polynomials. Given a polynomial of the form a(z) = zn−1 = zn+1 (n > 1), 
it is always possible to find two polynomials such thatit is always possible to find two polynomials, such that,

zn+1 = g(z) h(z)
• Taking g(z) to be a generator polynomial, this condition is sufficient for g g( ) g p y ,

a resultant code to be an (n,k) cyclic code, where: 
– g(z) is a polynomial of degree n−k = r.

h( ) i l i l f d k– h(z) is a polynomial of degree k. 
• The other factor, the polynomial h(z), turns out to be a parity check 

polynomial, playing the same role as the parity check matrix. p y , p y g p y
• If we have a valid code word, x(z), the product of the code word with 

h(z) is zero (modulo zn+1), and if we have a code word contained an 
errorerror, 

(y(z)h(z))mod(zn+1) = [(x(z)+e(z))h(z)]mod(zn+1)
= [e(z)h(z)]mod(zn+1)
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Encoding/Decoding  Encoding/Decoding  
• Encoding: x(z)=u(z)g(z); 
• Parity check polynomial:Parity check polynomial: 

h(z) =[zn+1] /g(z)
• Decoding: (y(z) is the received vector)• Decoding: (y(z) is the received vector) 

– Calculate the syndrome polynomial:
s(z)=(y(z)h(z))mod(zn+1)s(z) (y(z)h(z))mod(z 1)

– Look up the syndrome table to get e(z) from s(z);
– x(z)=y(z)+e(z);
– u(z)=x(z)/g(z); 

Thi i th /d di d f t ti• This is the en/decoding procedure for non-systematic 
codes. A modified version works for systematic codes 
(non-examinable)
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Hardware Implementation Hardware Implementation 
• Binary polynomial multiplication: multiply-by-g(z) 

a(z)

g3g2g1g0

a(z)

( ) + + 2+ 3 1

g3g2g1g0
b(z)

g(z)=g0+g1z+g2z2+g3z3, g0=g3=1;
• Binary polynomial division: divide-by-g(z)  

g2g1g0

g(z)=g +g z+g z2+g z3 g =g =1;

a(z) b(z)
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g(z)=g0+g1z+g2z2+g3z3, g0=g3=1;



Examples of Cyclic CodesExamples of Cyclic Codes
• Hamming code (used in computer memory)
• Cyclic redundancy check (CRC) code (used in Ethernet, ARQ etc.)

B Ch dh i H h (BCH) d• Bose-Chaudhuri-Hocquenghem (BCH) code
• Reed-Solomon (RS) code (widely used in CD, DVD, hard disks, 

wireless, satellites etc.))
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Applications of CodingApplications of Coding
• The first success was the application of convolutional 

codes in deep space probes 1960’s-70’s.p p p
– Mariner Mars, Viking, Pioneer missions by NASA

• Voyager, Galileo missions were further enhanced by 
concatenated codes (RS + convolutional).

• The next chapter was trellis coded modulation (TCM) for 
voice-band modems in 1980’s.

• 1990’s saw turbo codes approached capacity limit (now 
d i 3G)used in 3G).

• Followed by another breakthrough – space-time codes in 
2000’s (used in WiMax 4G)2000 s (used in WiMax, 4G)

• The current frontier is network coding which may widen the 
bottleneck of Internet
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EE2EE2--4: Communication Systems4: Communication Systems

Revision LectureRevision Lecture

Dr. Cong Ling

Department of Electrical and Electronic Engineering
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LecturesLectures
Introduction and background
1. Introduction

Digital communications
8. Digital representation of signals

2. Probability and random 
processes

3 Noise

9. Baseband digital transmission
10.Digital modulation
11 N h t d d l ti3. Noise

Effects of noise on analog 
communications

11.Noncoherent demodulation
Information theory
12 Entropy and source coding

4. Noise performance of DSB
5. Noise performance of SSB and 

AM

12.Entropy and source coding
13.Channel capacity
14.Block codes

AM
6. Noise performance of FM
7. Pre/de-emphasis for FM and 

15.Cyclic codes

p
comparison of analog systems
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The ExamThe Exam
• The exam paper contains 3 questions. All questions are 

compulsory.p y
• For example, the questions may look like

– Question 1 (40 marks): Basic knowledge of communication 
systems, elements of information theory and/or coding, mostly 
bookwork

– Question 2 (30 marks): Analog or digital communications– Question 2 (30 marks): Analog or digital communications, 
bookwork, new example/application/theory

– Question 3 (30 marks): Digital or analog communications or 
i f i h / di b k kinformation theory/coding, bookwork, new 
example/application/theory

• Sample questions:Sample questions:
– Past papers
– Problems in classes
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Introduction, Probability and Random Introduction, Probability and Random 
ProcessesProcessesProcessesProcesses

• Primary resources in communications: power, bandwidth, 
cost

• Objectives of system design: reliability and efficiency
• Performance measures: SNR or bit error probabilityPerformance measures: SNR or bit error probability
• Probability distribution: Uniform distribution, Gaussian 

distribution, Rayleigh distribution, Ricean distributiony g
• Random process: stationary random process, auto-

correlation and power spectral density, Wiener-Khinchine 
relation

  deRfS fj
XX 

  2)()( f XX  
)()(
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NoiseNoise
• Why is noise important in communications? How does 

noise affect the performance? What types of noise exist?p yp
• White noise: PSD is constant over an infinite bandwidth. 
• Gaussian noise: PDF is Gaussian.Gaussian noise: PDF is Gaussian.
• Additive white Gaussian noise
• Bandlimited noise, bandpass representation, basebandBandlimited noise, bandpass representation, baseband 

noise nc(t) and ns(t), power spectral density

)i ()()()()( ff )2sin()()2cos()()( tftntftntn cscc  

( ) ( ), | |
( ) ( )

0, otherwise
N c N c

c s

S f f S f f f B
S f S f

   
  


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Noise performance of AMNoise performance of AM
• Signal-to-noise ratio S

N

PSNR
P



• Baseband communication model baseband
0

TPSNR
N W



• AM, DSB-SC, SSB, synchronous detection, envelope 
detectiondetection

• Output SNR
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Noise performance of FMNoise performance of FM
• FM modulator and demodulator
• Method to deal with noise in FM: linear argument at highMethod to deal with noise in FM: linear argument at high 

SNR
• Derivation of the output SNR, threshold effectDerivation of the output SNR, threshold effect

• Pre-emphasis and de-emphasis, how they increase the 
output SNR
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Digital communicationsDigital communications
• PCM: sample, quantize, and encode

• Quantization noise and SNR 10 2

36 10logo
p

PSNR n
m

 
    

 
(dB) (dB)

• Companding (A/-law) and line coding

• Baseband data transmission, effects of noise, and 
probability of errorprobability of error
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Noise performance of bandpass digital Noise performance of bandpass digital 
communicationscommunicationscommunicationscommunications

• Modulation formats: ASK, FSK, PSK

• Coherent detection and its error probability

• Noncoherent detection and its error probability (including 
differential detection for DPSK)differential detection for DPSK)

• Q-function Q(x): computation by using the graph orQ function Q(x): computation by using the graph or 
approximation

1 2

0,
2
1)( 2/2

  xe
x

xQ x


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Performance of digital modulationPerformance of digital modulation
Scheme Bit Error Rate

Noncoherent 
ASK, FSK

Coherent ASK Q(A/2)

Coherent FSK Q(A/2)

ASK, FSK

Coherent 
ASK, FSK

Coherent PSK Q(A/)

Noncoherent ½ exp( A2/82)
Coherent PSK

Noncoherent 
ASK

½ exp(-A /8 )

Noncoherent ½ exp(-A2/42)
FSK

p( )

DPSK ½ exp(-A2/22)

Caution: ASK and FSK have the same bit 
t if d b SNR

276
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Information theoryInformation theory
• The entropy of a discrete memoryless information source

K

• Entropy function (entropy of a binary memoryless source)





K

k
kk ppSH

1
2log)(

• Entropy function (entropy of a binary memoryless source)

2 2( ) (1 ) log (1 ) log ( )H S p p p p H p     

• Source coding theorem: The minimum average codeword 
length for any source coding scheme is H(S) for a discretelength for any source coding scheme is H(S) for a discrete 
memoryless source.

• Huffman coding: An efficient source coding algorithm.
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Channel coding theoremChannel coding theorem
• If the transmission rate R ≤ C, then there exists a 

coding scheme such that the output of the source can g p
be transmitted over a noisy channel with an arbitrarily 
small probability of error. Conversely, it is not 
possible to transmit messages without error if R > C.

• Shannon formula

 2 2log 1 log 1 PC B B
N B

 
    

 
SNR

0N B 
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Channel codingChannel coding
• Block vs. convolutional codes
• Binary fields and vector space, Hamming distance/weighty p , g g
• A linear block code can be defined by a generator matrix 

G and the associated parity-check matrix H.
• Every linear block code is equivalent to a systematic code.
• The key parameter of a linear block code is the minimum 

Hamming distance d :Hamming distance dmin:
– Up to dmin – 1 errors can be detected;
– Up to (dmin – 1)/2 errors can be corrected.p ( min )

• Syndrome decoding: compute the syndrome and then find 
the error pattern.

• Hamming codes
• Cyclic codes: (polynomial representation is not 

examinable)
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Appendix: Appendix: 
More Background on ProbabilityMore Background on ProbabilityMore Background on ProbabilityMore Background on Probability



ProbabilityProbability

• Sample Space 
– S : Set of all random experiment outcomes

S { i t }– S = { s : s is an outcome }
• Examples

– For tossing a coin, S = { H, T }
– Roll a die, S = { 1, 2, …, 6 }

• Event 
– Roll a die twice: S = { (H,H), (H,T), (T,H), (T,T) }

SE 
Roll a die twice: S  { (H,H), (H,T), (T,H), (T,T) }

– Event E = { (H,H), (T,T) }
– A collection of events, F. Obviously,

• A probability measure on F is a function P : F → [0 1] satisfying the
SF 

• A probability measure on F is a function P : F → [0,1] satisfying the 
probability axioms:
– P(S) = 1

P(F) ≥ 0– P(F) ≥ 0
– For events A, B belonging to F, if A ∩ B=0, P(A U B) = P(A) + P(B)
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Random Random VariablesVariables
• A random variable X(s) is a variable whose value depends on 

the outcome s of a random experiment with the defined 
probability measure.y

• Consider a gamble in Macau (an example of discrete random 
• For convenience, we simply denote the random variable by  X.

variables):

5

  Ws

Win
P=3/8

Draw
P=1/4

Loss
P=3/8

3)():()5)((
5

0)(












WPWPXP

LDWS
Ls

DssX

-$5 $50
X(s)

8
3

4
1
8
3

)():()5)((
)():()0)((
)():()5)((







LPLssPsXP
DPDssPsXP
WPWssPsXP

$5 $50

• Continuous random variables: take values that vary 
continuously, e.g., water flow of River Thames through London 
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CDF and CDF and pdfpdf

• Cumulative Distribution Function (CDF), also known as Probability 
Distribution Function

• Probability Density Function (pdf)
)()(:CDF

)(


xdF

X xXPxF

)()(

)(:pdf )(






x

XX

dx
xdF

X
X

dyyfxF

xf

1)()(

)()(

 






XX

XX

dyyfF

yyf

)()()()(

)()(

 




b

XXX

XX

dyyfaFbFbXaP

yyf

decreasing-non is )( Since

)()()()(  
X

a
XXX

xF

dyyfaFbFbXaP
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Interpretation of pdfInterpretation of pdf





xx

XX xxfdyyfxxXxP )()()(

x• If        is sufficiently small,


x

XX fyyf )()()(

)( yf X Area

)( xf X

x
y

x

x

• Expectation operator (expected value or average):




 dyyfyXE XX )(][ 

• Variance:


22222 ][)()(])[( XXXXX XEdyyfyXE   

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Moments of a Moments of a Random VariableRandom Variable

• Moments: ,...,,rXE r
r 321for][ 

Average (mean) of X:Average (mean) of X:
XmXE or][1 

• Central moments, centered on the mean,

,...,,rmXE r
Xr 321for]|[|' 

C• Comments

0][]['1  XX mXEmXE

':deviation Standard

]|[|':Variance

2X

2
2







 XmXE

which gives a measure of “dispersion” of X about its mean
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Examples of Discrete DistributionsExamples of Discrete Distributions

• Let  p + q = 1

• Bernoulli distribution
qXPpXP  )0()1(

Bi i l di t ib ti

with p representing the probability of success in an experiment

• Binomial distribution

nkqp
k
n

kYP knk ,...,2,1,0)( 







 

Y represents the total number of successes, in an independent 
trial of n Bernoulli experiments

k 


p

• Exercise: Verify 

YE

pqpXE X 
2

2

][

,][ 
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Examples of Continuous Distributions:Examples of Continuous Distributions:
Exponential Exponential DistributionDistribution

)( xf X



x
0

0for)(   xexf x
X



E i V if 1• Exercise: Verify 

2
12

1)(





 



X

XE
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Normal (Gaussian) Normal (Gaussian) DistributionDistribution

)( xf X



mx 2)( 

x
0 m

xexf

my

X

2)(

22

)(

2
1 for)( 







dyexF

y
x

X
22

)(

2
1)(










• Exercise: Verify 
22

)(  mXE
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Rayleigh and Rayleigh and Rice Rice DistributionsDistributions

• Define a random variable where X and Y are 22 YXR 

independent Gaussian with zero mean and variance 2

• R has Rayleigh distribution:

0)( )2/( 22

2   rerf rr
R




R has Rayleigh distribution:

0)()(
222 )2/()(   rIerf ArArr 

• If X has nonzero mean A, R has Rice distribution:

0)()( 22 0  rIerfR 

where 
 

 dexI x
2

0

cos
2
1

0 )( is the modified zero-order0
Bessel function of the first kind
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Conditional ProbabilityConditional Probability

• Consider two events A and B, not necessarily independent of each 
other

Define P(A|B) = Probability of A given B– Define P(A|B) = Probability of A given B
• Carry out N independent trials (experiments) and count

– N(A) = Number of trials with A outcome
– N(A,B) = Number of trials with both A and B outcome

• By definition

)|(

as)(

)(
),(

)(

BAP

NAP

BN
BAN

N
AN





)()|()(

)|(

)(
)(

),(),(
)(

APABPBAP N
AN

AN
BAN

N
BAN

BN



)()|()(Similarly, BPBAPBAP 

• Statistical independence between A and B
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Joint Random VariablesJoint Random Variables

)()(

,:variablesRandom

dudvvufyxF

YX
x y

 

pdfjointthe:),(

),(),(

yxf

dudvvufyxF

XY

XYXY  
 



CDFjointthe:),( yxFXY

• Properties of joint distribution:

1),(),()1 dudvvufF XYXY 










 

)()()2

),()()2

dxyxfxfb

dyyxfxfa
y

XYX 









),()3

),()()2

yx
),(2

yxf

dxyxfxfb

yxF
XY

x
XYY

XY








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Conditional Conditional CDF CDF and and pdfpdf

y xx 

Define                  as the conditional CDF for Y given X = x.
By conditional probability

)|( xyFY

)(

),(

)(
),()|(

duuf

dudvvuf

xxXxP
xxXxyYP

Y xx

X

y xx

x
XY

xxXxyF


 
 








By conditional probability,

)(

),(

xxf

xdvvxf

X

y

XY

x


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



)(

),(

)(

)|(,0As xf

dvvxf

Y

f

X

y

XY

X

xyFx


 

The conditional pdf

)(
),()|( )|()|( xf

yxf
Ydy

xydF
Y X

XYY xyfxyf 
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Joint Distribution Joint Distribution Function of Several Random VariablesFunction of Several Random Variables

• The joint PDF of n random variables

),...,(),...,(
,...,

221121...

1

21 nnnXXX

n

xXxXxXPxxxF
XX

n


nnXXX
n xxxFxxxf  ),...,( 21...21)(

21 n

• The joint pdf

n

n

n xxxnXXX xxxf  ...21... 21

21

21
),...,(

• Independent random variables

)()...()(),...,(

)()...()(),...,(

2121

2121...

2121

2121

nXXXnXXX

nXXXnXXX

xfxfxfxxxf

xFxFxFxxxF
nn





)()()(),,( 2121... 2121 nXXXnXXX ffff
nn

• Uncorrelated random variables

jijiXEXEXXE ][][][
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Covariance and Correlation CoefficientCovariance and Correlation Coefficient

)])([(),cov( YX mYmXEYX 

Covariance of X and Y:

Correlation Coefficient:

YX mYmXEYX )])([(),cov( 
YXYX

XY  

Property 1: 11  XYProperty 1: 11  XY

Property 2: X and Y are linearly related
if and only if 1

).,.( baXYei 
if and only if 1XY

Property 3: If X and Y are independent, 0XY

Caution: The converse of Property 3 is not true in general. 
That is, if               , X and Y are not necessarily 
independent!

0XY
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Joint Gaussian distributionJoint Gaussian distribution

 22
YX0,withddistributenormallyjointly mmX, Y YX  

 22
)1(2

1
12

1

:densitymarginalThe

)2(exp),( 2222 yxyxyxf XYXY
XYXY







22
1 }exp{),()( 2

2

dxyxfyf y

x
XYY 







 2
)1(2

1
12

1
)(

),(
| )(exp)|(

:functiondensitylConditiona

222 yxyxf XYyf
yxf

YX Y

XY 


  
)1(212)(| 2 XYyfYX

XYXYY  

Note that this conditional pdf is also a normal density function withNote that this conditional pdf is also a normal density function with 
mean             and variance                 . The effect of the condition
(having Y=y on X) is to change the mean of X to           and to 

d th i b

yXY )1( 22
XY 

yXY
22
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Independent vs. UncorrelatedIndependent vs. Uncorrelated
• Independent implies Uncorrelated
• Uncorrelated does not imply IndependenceUncorrelated does not imply Independence
• For jointly Gaussian random variables, Uncorrelated 

implies Independent (this is the only exceptional case!)implies Independent (this is the only exceptional case!)

• Exercise: verify the above claim of jointly GaussianExercise: verify the above claim of jointly Gaussian 
random variables
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An An example example of uncorrelated but dependent of uncorrelated but dependent random variablesrandom variables

Let     be uniformly distributed in   ]2,0[ 

 20for)( 2
1  xxf

Define random variables X and Y as  sincos  YX

 )( 2f

Clearly, X and Y are not independent. In particular, for a given     , 
X and Y are dependent.



If X and Y were independent, we 

Y Locus of 
X and Y

should see possible sample points of 
(X,Y) assume all possible values of X
and Y in a unit square.

X

X and Y q
But X and Y are uncorrelated as  

)])([(  mYmXE YXXY


sincos

][
2
02

1






  d

XYE

297

!0



Central Limit TheoremCentral Limit Theorem





n

i
in XS

1
• Define

where are i.i.d.  with sX i '  22,][  XXE

nS
n

nR • Define a new random variable,

:TheoremLimitCentral

nn,









x
y

nn
dyexRP 2/

2
1 2

)(lim


• Importance: The “shifted and scaled” sum of a very large number 
of i.i.d. random variables has a Gaussian distribution
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