Imperial College
London

EE2-4: Communication Systems

Dr. Cong Ling

Department of Electrical and Electronic Engineering



Course Information

Lecturer: Dr. Cong Ling (Senior Lecturer)
— Office: Room 815, EE Building

— Phone: 020-7594 6214

— Email: c.ling@imperial.ac.uk

Handouts

— Slides: exam is based on slides

— Notes: contain more details

— Problem sheets
Course homepage

— http://www.commsp.ee.ic.ac.uk/~cling

— You can access lecture slides/problem sheets/past papers
— Also available in Blackboard
Grading

— 1.5-hour exam, no-choice, closed-book




Lectures

Introduction and background

1.
2.

3.

Introduction

Probability and random
processes

Noise

Effects of noise on analog

4.
5.

communications
Noise performance of DSB

Noise performance of SSB and
AM

Noise performance of FM

Pre/de-emphasis for FM and
comparison of analog systems

Digital communications

8. Digital representation of signals
9. Baseband digital transmission
10. Digital modulation
11.Noncoherent demodulation
Information theory

12. Entropy and source coding

13. Channel capacity

14.Block codes

15. Cyclic codes



EE2-4 vs. EE1-6

 Introduction to Signals and Communications
— How do communication systems work?
— About modulation, demodulation, signal analysis...

— The main mathematical tool is the Fourier transform for
deterministic signal analysis.

— More about analog communications (i.e., signals are continuous).

« Communications
— How do communication systems perform in the presence of noise?

— About statistical aspects and noise.

» This is essential for a meaningful comparison of various
communications systems.

— The main mathematical tool is probability.
— More about digital communications (i.e., signals are discrete).



Learning Outcomes

Describe a suitable model for noise in communications

Determine the signal-to-noise ratio (SNR) performance of
analog communications systems

Determine the probability of error for digital
communications systems

Understand information theory and its significance in
determining system performance

Compare the performance of various communications
systems



About the Classes

You're welcome to ask questions.
— You can interrupt me at any time. Buoyancy
— Please don'’t disturb others in the class.

Our responsibility is to facilitate you to learn.
You have to make the effort.

Spend time reviewing lecture notes afterwards.

If you have a question on the lecture material Weight
after a class, then
— Look up a book! Be resourceful.
— Try to work it out yourself.
— Ask me during the problem class or one of scheduled times of availability.
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Multitude of Communications =

Telephone network |
Internet

Radio and TV broadcast
Mobile communications
Wi-Fi

Satellite and space communications i - l
Smart power grid, healthcare... —

Analogue communications

— AM, FM

Digital communications

— Transfer of information in digits

— Dominant technology today
— Broadband, 3G, DAB/DVB




What's Communications?

« Communication involves the transfer of information from
one point to another.

* Three basic elements

— Transmitter: converts message into a form suitable for
transmission

— Channel: the physical medium, introduces distortion, noise,
interference

— Receiver: reconstruct a recognizable form of the message

Communication System

I I

Source of I . ) I User of

. . === [ransmitter Receliver . )

information ! . | information

Message | Estimate of |
signal | message |
Speech : signal |
Music | :
Pictures | ————={ Channel . |
Data | Transmitted Re;ewed I
I signal signal |



Communication Channel

The channel is central to operation of a communication
system

— Linear (e.g., mobile radio) or nonlinear (e.g., satellite)

— Time invariant (e.g., fiber) or time varying (e.g., mobile radio)

The information-carrying capacity of a communication
system is proportional to the channel bandwidth

Pursuit for wider bandwidth
— Copper wire: 1 MHz

— Coaxial cabie: 100 MHz

— Microwave: GHz

— Optical fiber: THz
» Uses light as the signal carrier
« Highest capacity among all practical signals
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Noise in Communications

Unavoidable presence of noise in the channel
— Noise refers to unwanted waves that disturb communications
— Signal is contaminated by noise along the path.

External noise: interference from nearby channels, human-
made noise, natural noise...

Internal noise: thermal noise, random emission... In
electronic devices

Noise is one of the basic factors that set limits on
communications.

A widely used metric is the signal-to-noise (power) ratio
(SNR)

signal power
noise power

SNR=

11



Transmitter and Recelver

The transmitter modifies the message signal into a form
suitable for transmission over the channel

This modification often involves

— Moving the signal to a high-frequency carrier (up-conversion) and
varying some parameter of the carrier wave

— Analog: AM, FM, PM
— Digital: ASK, FSK, PSK (SK: shift keying)

The receiver recreates the original message by

— Recovery is not exact due to noise/distortion
— The resulting degradation is influenced by the type of modulation

Design of analog communication is conceptually simple

Digital communication is more efficient and reliable; design
IS more sophisticated
12



Objectives of System Design

« Two primary resources in communications
— Transmitted power (should be green)
— Channel bandwidth (very expensive in the commercial market)
* |n certain scenarios, one resource may be more important
than the other

— Power limited (e.g. deep-space communication)
— Bandwidth limited (e.g. telephone circuit)

* QObjectives of a communication system design
— The message is delivered both efficiently and reliably, subject to
certain design constraints: power, bandwidth, and cost.

— Efficiency is usually measured by the amount of messages sent in
unit power, unit time and unit bandwidth.

— Reliability is expressed in terms of SNR or probability of error.
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Information Theory

In digital communications, is it possible to operate at
zero error rate even though the channel is noisy?

Poineers: Shannon, Kolmogorov...
— The maximum rate of reliable transmission is
calculated.
— The famous Shannon capacity formula for a channel
with bandwidth W (Hz)
C =W log(1+SNR) bps (bits per second)
— Zero error rate is possible as long as actual signaling
rate is less than C.
Many concepts were fundamental and paved the
way for future developments in communication
theory.
— Provides a basis for tradeoff between SNR and i,
bandwidth, and for comparing different communication ==
schemes.

Kolmogorov
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Milestones In Communications

1837, Morse code used in telegraph
1864, Maxwell formulated the eletromagnetic (EM) theory
1887, Hertz demonstrated physical evidence of EM waves

1890’s-1900’s, Marconi & Popov, Iong -distance radio
telegraph | §

— Across Atlantic Ocean

— From Cornwall to Canada

1875, Bell invented the telephone
1906, radio broadcast

1918, Armstrong invented superheterodyne radio receiver
(and FM in 1933)

1921, land-mobile communication
15



Milestones (2)

1928, Nyquist proposed the sampling theorem
1947, microwave relay system

1948, information theory

1957, era of satellite communication began

1966, Kuen Kao pioneered fiber-optical
communications (Nobel Prize Winner)

1970’s, era of computer networks began
1981, analog cellular system
1988, digital cellular system debuted in Europe

2000, 3G network
The big 3 telecom manufacturers in 2010
. W
ERICSSON Z -
CISCO. HUAWEI
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Cellular Mobile Phone Network

« Alarge area is partitioned into cells
* Frequency reuse to maximize capacity

MSC PSTN

Figure 1.5 A cellular system. The towers represent base stations which provide radio access be-
tween mobile users and the mobile switching center (MSC).



Growth of Mobile Communications

1G: analog communications
— AMPS

2G: digital communications  so00

4500 +
- GSM 4000+
- 1S-95 £ 3500+
3G: CDMA networks ézzzg
- WCDMA %2{]{){] +
— CDMA2000 £ 1500
1000+
~ TD-SCDMA soo -+ §

4G: data rate up to
1 Gbps (giga bits per second)

— Pre-4G technologies:
WiMax, 3G LTE

Global mobile cellular subscriptions,
total and per 100 inhabitants 2000-2009

mmmm Subscriptions (Millions)

—a— Per 100 inhabitants

Source: ITU World Telecommunication/ICT Indicators database.
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Wi-Fi

Wi-Fi connects “local” computers (usually within 100m
range)

Ethamet
Nobwork

Exizting
Iritermet
Cannection
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IEEE 802.11 Wi-FI Standard

802.11b
— Standard for 2.4GHz (unlicensed) ISM band
— 1.6-10 Mbps, 500 ft range

802.11a

— Standard for 5GHz band

— 20-70 Mbps, variable range

— Similar to HiperLAN in Europe

802.11g
— Standard in 2.4 GHz and 5 GHz bands

— Speeds up to 54 Mbps, based on orthogonal frequency division
multiplexing (OFDM)

802.11n

— Data rates up to 600 Mbps
— Use multi-input multi-output (MIMO)

20



Satellite/Space Communication

« Satellite communication
— Cover very large areas

— Optimized for one-way transmission

» Radio (DAB) and movie (SatTV)
broadcasting

— Two-way systems

* The only choice for remote-area and
maritime communications

* Propagation delay (0.25 s) is
uncomfortable in voice
communications

e Space communication
— Missions to Moon, Mars, ...
— Long distance, weak signals
— High-gain antennas

— Powerful error-control coding

21



Future Wireless Networks

Ubiquitous Communication Among People and Devices

Wireless Internet access
Nth generation Cellular

Ad Hoc Networks
Sensor Networks
Wireless Entertainment
Smart Homes/Grids

Automated Highways
All this and more...

Hard Delay Constraints
;Hard Energy Constraints

22



Communication Networks

« Today’'s communications networks are complicated
systems
— A large number of users sharing the medium
— Hosts: devices that communicate with each other
— Routers: route date through the network

Boundary
of subnet

Hosts

23



Concept of Layering

« Partitioned into layers, each doing a relatively simple task

* Protocol stack

Network

Applications
and Services
Presentation Application
o Transport
Transport Network
Network .
- Link
Data Link .
R Physical
Physical
TCP/IP protocol
stack (Internet)
OSI Model

Physical

2-layer model
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Outline

* Probability
— How probability is defined
— cdf and pdf
— Mean and variance
— Joint distribution
— Central limit theorem

« Random processes
— Definition
— Stationary random processes
— Power spectral density

* References
— Notes of Communication Systems, Chap. 2.3.
— Haykin & Moher, Communication Systems, 5th ed., Chap. 5

— Lathi, Modern Digital and Analog Communication Systems, 3rd ed.,
Chap. 11
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Why Probability/Random Process?

Probability is the core mathematical tool for communication
theory.

The stochastic model is widely used in the study of
communication systems.

Consider a radio communication system where the received

signal is a random process in nature:

— Message is random. No randomness, no information.

— Interference is random.

— Noise is a random process.

— And many more (delay, phase, fading, ...)

Other real-world applications of probability and random

processes include

— Stock market modelling, gambling (Brown motion as shown in the
previous slide, random walk)...

27



Probabilistic Concepts

 What is a random variable (RV)?

— It is a variable that takes its values from the outputs of a random
experiment.

 What is a random experiment?
— Itis an experiment the outcome of which cannot be predicted
precisely.
— All possible identifiable outcomes of a random experiment
constitute its sample space S.
— An event is a collection of possible outcomes of the random

experiment.
« Example
— Fortossingacoin,S={H, T}
— Forrollingadie, S={1,2,...,6}

28



Probability Properties

P,(x,): the probability of the random variable X taking on
the value x;

The probability of an event to happen is a non-negative
number, with the following properties:

— The probability of the event that includes all possible outcomes of
the experiment is 1.

— The probability of two events that do not have any common

outcome is the sum of the probabilities of the two events
separately.

Example
— Rolladie: Pyx=k=1/6 fork=1,2,...,6

29



CDF and PDF

The (cumulative) distribution function (cdf) of a random variable X
is defined as the probability of X taking a value less than the
argument x:

F,.(x)=P(X <Xx)

Properties
Fy(-0)=0, Fy(0)=1

Fi(x) < Fy(x,) if x, <x,

The probability density function (pdf) is defined as the derivative of
the distribution function:

oy = A
fX(x):T

Fe(x)= | fe()dy

Pla< X <b)=Fy(b)=Fy(a)=| f(»)dy

fy(x) =" >0 since F,(x)isnon-decreasing
30



Mean and Variance

* If Ax is sufficiently small,
X+ Ax

P(x<X<x+Ax)= [ fx(»dy = fy(x)Ax
Jx(») Area

fx (x)

* Mean (or expected value < DC level):

o0

E[ 1: expectation
ELX]= gy = j x fy (x)dx o;[)]eratopr

« Variance (< power for zero-mean signals):
o0

oy = EL(X = 1, V1= | (=, ) fy (¥)dx = E[X*] - p1

31



Normal (Gaussian) Distribution

fng)
/\H
o
» X
0 m
_(x—m)2
2
fy(x)=—=L—e 2o for —oo < x <0
vizo E[X]=m
_)2
. NG 2) O'X2=O'2

FX(X):\/%G Je dy o :rmsvalue
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Uniform Distribution
fX(iC)

(b-a)

B b X
! a<x<bh a+b
fx(x)=1b-a E[X]=
0 elsewhere 2
(0 x<a o 2:(17_“)2
X—a * 12
FX(x):ib a<x<bh
—a
\1 x>b
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Joint Distribution

o Joint distribution function for two random variables X and Y

ny(xay):P(ng:YSy)

 Joint probability density function

* Properties
y

\®)
~

4)
5)

Frp () = S

F,, (,0) = T Tfn(u,v)dudv:l

—00 —00

L

JX(x) =

f £ (~+ 5\
| S (%, )y

00

y:

Sy )= [ far(r)dx

X=—00

X,Y areindependent < f,,(x,y) = f, (x) f, (»)
X,Yareuncorrelated < E[XY]= E[X]E[Y]
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Independent vs. Uncorrelated

Independent implies Uncorrelated (see problem sheet)
Uncorrelated does not imply Independence

For normal RVs (jointly Gaussian), Uncorrelated implies
Independent (this is the only exceptional case!)

An example of uncorrelated but dependent RV'’s
Let ¢ be uniformly distributed in [0,27]

: Y, Locus of
Jo(x)=5_ tor0<x<27 Xand Y
Define RV's X and Y as / . Y
X =cos@ Y =sind K/
Clearly, X and Y are not independent.

But X and Y are uncorrelated:

E[XY]=2 [ cosOsin 06 = 0!
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Joint Distribution of n RVs

Joint cdf
Fy v ox (0,%,,.x,)=P(X, <x,X,<x,,..X, <x,)
Joint pdf
_ 0"Fyx Xy (X15X0 500X, )
/ X, X, X, (%X}, X)X, ) = — 82x18x2...6xn
Independent

Fyx, x (X, %,..%,) = Fy (x)Fy (x,)..Fy (x,)

£ (v yY=Ff (v YF (Y £ (v )
JX Xy X, \ Mo A2y ) T Jx, M x, \ A2 ) J X, \P )

I.I.d. (independent, identically distributed)

— The random variables are independent and have the same
distribution.

— Example: outcomes from repeatedly flipping a coin.
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Central Limit Theorem

Fori.i.d. random variables,

Z=X{ T X, T T X,
tends to Gaussian as n
goes to infinity.
Extremely useful in
communications.

That's why noise is usuallyj

Gaussian. We often say
“Gaussian noise” or
“Gaussian channel”

communications.

X1 1 T X
X, _|_x2 X4 -|-x2+
+ X, X3+ X,

lllustration of convergence to Gaussian
distribution
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What iIs a Random Process?

A random process is a time-varying function that assigns
the outcome of a random experiment to each time instant:
X(7).

For a fixed (sample path): a random process is a time
varying function, e.g., a signal.

For fixed ¢. a random process is a random variable.

If one scans all possible outcomes of the underlying
random experiment, we shall get an ensemble of signals.

Noise can often be modelled as a Gaussian random
process.

38



An Ensemble of Signals

Sample
space

Xl(l‘)

X2 (I )

Il(f}r\)
0 Outcome of the
first trial of
| the experiment
|
|
|
o) |
|
Outcome of the
| second trial of
| the experiment
|
|
|
|
|
x,(t) I
|

Outcome of the
nth trial of
| +T the experiment

[ —Dm
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Statistics of a Random Process

» For fixed t. the random process becomes a random
variable, with mean

we () =EXO]= [ x [ (xi1)dx

— In general, the mean is a function of «.
« Autocorrelation function

R, (t,t,)=E[X ()X (t,)]= I:I_ixy Sy (X, y5t,,t, )dxdy

— In general, the autocorrelation function is a two-variable function.
— It measures the correlation between two samples.

40



Stationary Random Processes

* A random process is (wide-sense) stationary if
— Its mean does not depend on ¢

iy (1) =ty
— Its autocorrelation function only depends on time difference

R, (t,t+7)=R (1)

Rx(7) Slowly fluctuating
random process

Rapidly fluctuating
random process

0

* In communications, noise and message signals can often
be modelled as stationary random processes.
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Example

« Show that sinusoidal wave with random phase
X(t)=Acos(w,t+0O)
with phase O uniformly distributed on [0,211] is stationary.
— Mean is a constant: 1
11, (t) = E[X(1)] = joz” Acos(a.t + Q)ide ) o) =7—, 0¢€l0,27]

— Autocorrelation function only depends on the time difference:

R, (t,t+7)=E[X()X(t+7)]
= E[A? cos(w.t + ®) cos(w.t + w7 + O)]

A2 A
= ElcosCw.t+ w7 +20)]+ el E[cos(w,7)]

A2 2 1 A2
=—| cosQat+w,r+260)—d0+—-cos(w,7)
A q
R, (7)= =) cos(@,7) /N /N / T\
\/ 0 \/
1
A




Power Spectral Density

Power spectral density (PSD) is a function that measures
the distribution of power of a random process with
frequency.

PSD is only defined for stationary processes.

Wiener-Khinchine relation: The PSD is equal to the
Fourier transform of its autocorrelation function:

Sy()=[ Ry(r)e " dr

— A similar relation exists for deterministic signals

Then the average power can be found as
P=E[X*(0]=R(0)=] S, (/)df

The frequency content of a process depends on how

rapidly the amplitude changes as a function of time.
— This can be measured by the autocorrelation function.
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Passing Through a Linear System

Impulse
X(t) —= response
h(t)

— ¥(7)

« Let Y(t) obtained by passing random process X(t) through
a linear system of transfer function H(f). Then the PSD of

Y (1)

— Proof: see Notes 3.4.2.

S, () =|H| S, (f) 2.1)

— Cf. the similar relation for deterministic signals
« If X(t) is a Gaussian process, then Y(t) is also a Gaussian

process.

— Gaussian processes are very important in communications.
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Outline

WHITE NOISE

What is noise?
White noise and Gaussian noise
Lowpass noise

Bandpass noise

— In-phase/quadrature representation
— Phasor representation

e wf “\MWWW.

References
— Notes of Communication Systems, Chap. 2.
— Haykin & Moher, Communication Systems, 5th ed., Chap. 5

— Lathi, Modern Digital and Analog Communication Systems, 3rd ed.,
Chap. 11
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Noise

* Noise is the unwanted and beyond our control waves that
disturb the transmission of signals.

 Where does noise come from?
— External sources: e.g., atmospheric, galactic noise, interference;

— Internal sources: generated by communication devices themselves.

» This type of noise represents a basic limitation on the performance of
electronic communication systems.

the electrons are discrete and are not moving in a
continuous steady flow, so the current is randomly fluctuating.

caused by the rapid and random motion of eiectrons
within a conductor due to thermal agitation.

« Both are often stationary and have a zero-mean Gaussian
distribution (following from the central limit theorem).
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White Noise

« The additive noise channel 1
Channe
— n(7) models all types of noise
: + — X(1) = 5(1) ~ (1)

— zero mean —9
« White noise (1)

— Its power spectrum density (PSD) is constant over all frequencies,

l.e.,

S(N=S, o< f<e

— Factor 1/2 is included to indicate that half the power is associated
with positive frequencies and half with negative.

— The term white is analogous to white light which contains equal
amounts of all frequencies (within the visible band of EM wave).

— It's only defined for stationary noise.
* An infinite bandwidth is a purely theoretic assumption.

<
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White vs. Gaussian Noise

White noise PSD
Sy(f) Rn(7)

(a) (b)
— Autocorrelation function of n(t):Rn(f)=%5(f)

— Samples at different time instants are uncorrelated.
Gaussian noise: the distribution at any time instant is

Gaussian .
_ _ 5 Gaussian
— Gaussian noise can be colored ' PDF
White noise # Gaussian noise \
— White noise can be non-Gaussian R L B S R

Nonetheless, in communications, it is typically additive
white Gaussian noise (AWGN).
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ldeal Low-Pass White Noise

Suppose white noise is applied to an ideal low-pass filter
of bandwidth B such that

N,
0 |fIKB _

S (f)=12 [/ Power P, = N,B
0, otherwise

By Wiener-Khinchine relation, autocorrelation function
R (7) = E[n(H)n(t+17)] = NyB sinc(2B 1) (3.1)
where sinc(x) = sin(mx)/mx.
Samples at Nyquist frequency 2B are uncorrelated
R (7)=0, t=kI2B),k=1,2, ...

Sn(f) Ry(7)

2

B 0 B ‘ /3

0

; N\ /\ N,
N/ NS 2

2B

(a) 02)]



Bandpass Noise

Any communication system that uses carrier modulation will typically

have a bandpass filter of bandwidth B at the front-end of the receiver.

Modulated
signal

+
15

s(e)

x()
B

Demodulator

_%.

Band-pass
= filter
+
Noise
n(t)

Output
signal

Any noise that enters the receiver will therefore be bandpass in nature:

its spectral magnitude is non-zero only for some band concentrated
around the carrier frequency f. (sometimes called narrowband noise).

~f.—-B —f. —f.+B




Example

If white noise with PSD of N2 is passed through an ideal
bandpass filter, then the PSD of the noise that enters the

receiver is given by

Sy(f)
N, Ny
T f - f < B ________ ?_ ______
SN (f ) =4 2 | C|
0, otherwise | |
f

r— 28 —=

Power P, = 2N,B
Autocorrelation function
R (7) = 2N, Bsinc(2B r)cos(2nf.7)

— which. follows from (3.1) b;_/ () S G@)
applying the frequency-shift

g(t)-2cosopt < [Glo-w,)+GCG(o+w,)]

property of the Fourier transform

Samples taken at frequency 2B are still uncorrelated.
R(0)=0, 7=k/2B),k=1,2, ...
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Decomposition of Bandpass Noise

- Consider bandpass noise within |/ - f.|<B with any PSD
(i.e., not necessarily white as in the previous example)

« Consider a frequency slice Af at frequencies f, and —f,.
* For Af small:
n,(t)=a,cos(2xf,t+06,)

— 6,: arandom phase assumed independent and uniformly
distributed in the range [0, 2n)

— a,: a random amplitude.
S () 4“_

—f..— B ;ﬁ{—fc —f. + B o) f — B £ fk f. + B

>
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Representation of Bandpass Noise

« The complete bandpass noise waveform n(¢) can be

constructed by summing up such sinusoids over the entire
band, i.e.,

n(t) = an () = Zak cos(2z f,t +6,) f.=f +kAf  (3.2)

Now, Ietfk (f, — fc)+fc, and using cos(4 + B) = cosAcosB —
sindsinB we obtain the canonical form of bandpass
noise

n(t)=n,(t)cos(af t)—n (t)sin(27f ¢t)

where

n(6)=Ya, cos2x(f, - £)i+86,)
n(t)=Y a,sin@x(f, - £.)i +6,)

— n,(t) and n(r) are baseband signals, termed the in-phase and
quadrature component, respectively.

(3.3)
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Extraction and Generation

« n(t) and n¢) are fully representative of bandpass noise.

— (a) Given bandpass noise, one may extract its in-phase and
quadrature components (using LPF of bandwith B). This is
extremely useful in analysis of noise in communication receivers.

— (b) Given the two components, one may generate bandpass noise.
This is useful in computer simulation.

Low-pass
filter

— nc(t)

T

n(f) —=mg 2 COS (2mf.1)

Low-pass
filter

> ns(t)

T

—2 sin (27f.1)

(a)

n 1)

cos (27f.1) n(?)

ny(?)

sin (27f,.1)

(b)
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Properties of Baseband Noise

If the noise n(¢) has zero mean, then n_(¢r) and n(¢r) have
Zero mean.

If the noise n(¢) is Gaussian, then n(¢) and n(¢) are
Gaussian.

If the noise n(¢) is stationary, then n(¢) and n(¢) are
stationary.

If the noise n(¢) is Gaussian and its power spectral density
S( /) is symmetric with respect to the central frequency f,,
then n_(¢) and n(¢) are statistical independent.

The components #n (¢) and n(¢) have the same variance (=
power) as n(z).
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Power Spectral Density

* Further, each baseband noise waveform will have the

same PSD:

Sy(f=f)+S,(f+1), | fIKB

0, otherwise

Sc(f)=Ss(f)={

« This is analogous to

g(t) = G(w)
g(t)2cosot < [G(w—w,)+G(o+ w,)]

(3.4)

— A rigorous proof can be found in A. Papoulis, Probability, Random

Variables, and Stochastic Processes, McGraw-Hlill.

— The PSD can also be seen from the expressions (3.2) and (3.3)
where each of n (¢) and n () consists of a sum of closely spaced

base-band sinusoids.
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Noise Power

» Forideally filtered narrowband noise, the PSD of 7 _(¢)

and n (¢) is therefore given by SN=S(/)
Ny, |fIsB
S(H=S (=< " 3.5
A)=5.) {O, otherwise (5:5)
.

-B 0O B

« Corollary: The average power in each of the baseband
waveforms n(f) and n(¢) is identical to the average power
in the bandpass noise waveform n(r).

 For ideally filtered narrowband noise, the variance of n (¢)
and n(t) is 2N,B each.

Py

C

= Py, =2N,B
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Phasor Representation

« We may write bandpass noise in the alternative form:

n(t)=n,(t)cosr ft)—n (t)sm2xft)
=r(t)cos[2x f t+ ¢(1)]

— (f) = \/’”lc (t)* +n (r)* :the envelop of the noise

_ H(t) = tan—l[”s(t)] . the phase of the noise

n.(1)

) =2nft+ §r)

=

”y 2
e

ST

S — . —— —— — — — W —yr= —
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Distribution of Envelop and Phase

It can be shown that if n(¢) and n (¢) are Gaussian-
distributed, then the magnitude »(¢) has a Rayleigh
distribution, and the phase #¢) is uniformly distributed.

What if a sinusoid Acos(2xf.¢) is mixed with noise?
Then the magnitude will have a Rice distribution.

The proof is deferred to Lecture 11, where such
distributions arise in demodulation of digital signals.
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Summary

White noise: PSD is constant over an infinite bandwidth.
Gaussian noise: PDF is Gaussian.

Bandpass noise

— In-phase and quadrature compoments n(t) and ng(t) are low-pass
random processes.

— n,(t) and n(t) have the same PSD.

— n(t) and ng(t) have the same variance as the band-pass noise n(t).

— Such properties will be pivotal to the performance analysis of
bandpass communication systems.

The in-phase/quadrature representation and phasor

representation are not only basic to the characterization of

bandpass noise itself, but also to the analysis of bandpass

communication systems.
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Outline

SNR of baseband analog transmission
Revision of AM

SNR of DSB-SC

References
— Notes of Communication Systems, Chap. 3.1-3.3.2.
— Haykin & Moher, Communication Systems, 5th ed., Chap. 6

— Lathi, Modern Digital and Analog Communication Systems, 3rd ed.,
Chap. 12
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Noise in Analog Communication Systems

 How do various analog modulation schemes perform in
the presence of noise?

 Which scheme performs best?
« How can we measure its performance?

[nput Py
S Transmitter p—s——r-

Channel

my{7 )

Model of an analog communication system

Noise PSD: By is the bandwidth,
No/2 is the double-sided noise PSD

Channel noise
n(s)

Sy (F)

Receiver

s By

Qutput

<o
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SNR

« We must find a way to quantify (= to measure) the

performance of a modulation scheme.

* We use the signal-to-noise ratio (SNR) at the output of the

receiver:

SNR, =

average power of message signal at the receiver output  F

average power of noise at the receiver output P

— Normally expressed in decibels (dB)
— SNR (dB) = 10 log,,(SNR)

— This is to manage the wide range of power
levels in communication systems

— In honour of Alexander Bell

— Example:
« ratioof 2 > 3dB;4 > 6dB; 10 > 10dB

N

dB
If X is power,
X (dB) = 10 log4y(x)

If x is amplitude,
X (dB) = 20 log4y(x)
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Transmitted Power

P, The transmitted power

Limited by: equipment capability, battery life, cost,
government restrictions, interference with other channels,
green communications etc

The higher it is, the more the received power (P,), the
higher the SNR

For a fair comparison between different modulation
schemes:
— P, should be the same for all

We use the baseband signal to noise ratio SNR, _.pang 10
calibrate the SNR values we obtain
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A Baseband Communication System

It does not use
modulation

It is suitable for
transmission over wires

The power it transmits
IS identical to the
message power: P, =P
No attenuation: P; = P, =
P

The results can be
extended to band-pass
systems

Message signal = mir) Lowpass ¥p (1)
Message bandwidth = W @‘P banden W

Noise

{cl
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Output SNR

Average signal (= message) power
P =the area under the triangular curve

Assume: Additive, white noise with power spectral
density PSD = N,/2

Average noise power at the receiver
P, = area under the straight line = 2IW x N,/2 = WN,

SNR at the receiver output:

_ 5
aseband NOW
— Note: Assume no propagation loss

Improve the SNR by:

— increasing the transmitted power (P;1),

— restricting the message bandwidth (W |),

— making the channel/receiver less noisy (N, |).

SNR,
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Revision: AM

 General form of an AM signal:

() g = [A+m(©)]cos2f.1)

— A: the amplitude of the carrier
— f: the carrier frequency
— m(t): the message signal

 Modulation index:
m

S

— m,. the peak amplitude of m(?), i.e., m, = max |m(?)|
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Signal Recovery

Modulated +
signal

s (1)

Band-pass x () Qutput
filter —2 Demodulator =2 signal

+

Noise
n(t)

Receiver model

1) u<1 = A>m, :use an envelope detector.
This is the case in almost all commercial AM radio
receivers.

Simple circuit to make radio receivers cheap.

2) Otherwise: use synchronous detection = product
detection = coherent detection
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Synchronous Detection for AM

« Multiply the waveform at the receiver with a local carrier of
the same frequency (and phase) as the carrier used at the
transmitter:

2c082x f.1)s(2) ,,, =[A+m(t)]2cos’ (2 f.t)
=[A+m(¢)][1+cos(4r f )]
= A+ m(t)+--

« Use a LPF to recover 4+ m(r) and finally m(r)

« Remark: At the receiver you need a signal perfectly
synchronized with the transmitted carrier
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DSB-SC

* Double-sideband suppressed carrier (DSB-SC)
() psp-sc = Am(t) cos(27 £ 1)
« Signal recovery: with synchronous detection only
* The received noisy signal is
x(t) =s(t)+n(t)

=s(t)+n_(t)cos2af.t)—n (t)sin(2xf t)

= Am(t)cos(2af t)+n (t)cos(2xf t)—n (t)sm(2xf t)

=[Am(t)+n_(t)]cos(2xf t) —n (t)sin(27f t)

Coherent detector

r—-———_—_—_—_—_——e—,e— e ———_—_——— —

I
x(f) ()
DSB-SC E+ Band-pass |’ | Product Low-pass |
signal s(¢) filter | modulator filter ||E '
+ I
I
A _
Noise 2C0s (2f_.1)
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Synchronous Detection for DSB-SC

Multiply with 2cos(2f.f):
y(t)=2cos(2x f t)x(t)
= Am(t)2cos’ 2z f.t)+n_(t)2cos’ 2z f.t)—n (t)sin(47x f.t)
= Am(t)[1+cos(4x f t)|+n (t)[1+cos(4x f t)]—n (t)sin(4rx f t)
Use a LPF to keep
y=Am(t)+n.(?)
Signal power at the receiver output:

P, =E{4m (t))=AEm (t)}=A'P

Power of the noise n.(¢) (recall (3.5), and message
bandwidth W):

Py =] Nydf =2NW
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Comparison

SNR at the receiver output:
2
SNR, = AP
2N W
To which transmitted power does this correspond?
A*P
P. = E{A’m(t)’ cos’ 2r f.1)} = ;
So
5
SNRO = N = SNRDSB—SC
Comparison with
5
SN Rbaseband — N W — S N RDSB—SC — S N Rbaseband

0

Conclusion: DSB-SC system has the same SNR performance as a
baseband system.
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Outline

* Noise in SSB \ /

\ /
« Noise in standard AM e R

— Coherent detection
(of theoretic interest only)

— Envelope detection

* References
— Notes of Communication Systems, Chap. 3.3.3-3.3.4.
— Haykin & Moher, Communication Systems, 5th ed., Chap. 6

— Lathi, Modern Digital and Analog Communication Systems, 3rd ed.,
Chap. 12
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SSB Modulation

Consider single (lower) sideband AM:
S(t) g5 = gm(t) cos2af t + gﬁfz(t) sin27f t

where m(¢) is the Hilbert transform of m(%).

m(t) is obtained by passing m(r) through a linear filter
with transfer function —jsgn(f).

m(t) and m(t) have the same power P.
The average power is A4°P/4.

M(f) S(f)

Upper __L_o;er________fou_ve_r__ Upper
sideband sideband sideband sideband

-W 0 1% ' —f-W —f. —f.+W 0 f-W  f feW



Noise In SSB

Receiver signal x(7) = s(¢) + n(z).
Apply a band-pass filter on the lower sideband.

Still denote by n (¢) the lower-sideband noise (different
from the double-sideband noise in DSB).

Using coherent detection:

y(t)=x(t)x2cos(2x f 1)
= (%m(z‘) +n, (t)) + (

+(§ﬁfz(t) —n, (t)jsin(MfJ)

N |

m(t)+n, (t)j cos(4rx ft)

/

After low-pass filtering,

(1) = (gm@ + ncm]
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Noise Power

* Noise power for n(f) = that for band-pass noise =

N,W (halved compared to DSB) (recall (3.4))
SuH 1

N2 [

S AW 0 f-w 1
Lower-sideband noise

S Nc(f) 1
N2

-w ol w

Baseband noise



Output SNR

Signal power A4%P/4

SNR at output

AP
4N W

For a baseband system with the same transmitted power
A’P/A

SNR, =

AP
AN W
Conclusion: SSB achieves the same SNR performance

as DSB-SC (and the baseband model) but only requires
half the band-width.

S N Rbaseband —
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Standard AM: Synchronous Detection

x(t) =

- LPF

* Pre-detection signal:

A+ m(t)]cosnf t)+n(r)
A+m(t)]cosRnf t)+n (t)cosRaf t)—n (¢)sinrf t)

A+ m(t)+n,(1)]cosQaf ) —n (¢)sinQaf )

* Multiply with 2 cos(2nf):

y@)=[A+m(t)+n (t)][1+cos(4rf )]
—n (t)sm(4rf 1)

y=A+m(t)+n(t)
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Signal power at the receiver output:
=Enf ()} =P

Noise power:

SNR at the receiver output:

lﬁﬂlﬂﬂml

dallolllit

*AA "2 Y aN
ied pow

Output SNR

P, =2NW

SNR, =

ON W

P

=SNR,,,

er

PT

A2

_+_

2

P A*+P

2

2
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Comparison

SNR of a baseband signal with the same transmitted
power: Lap

SNR =
baseband 2 NOW
Thus:
P
SNRAM — A2 n P SNRbaseband
Note:
P
: <1
A+ P

Conclusion: the performance of standard AM with
synchronous recovery is worse than that of a baseband
system.
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Model of AM Radio Recelver

Envelope
detector

Loudspeaker

Antenna
RF Mi IF
> section Ixer > section
s 1\
e
yd rd
s
// Common
/ tuning y oscillator
AM signal Band-pass
s(t) filter

Noise
wi(t)

Audio
amplifier

_—

AM radio receiver of the superheterodyne type

x(t)

Envelope
detector

Model of AM envelope detector

Qutput

— signal

y(1)
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Envelope Detection for Standard AM

Phasor diagram of the signals present at an AM

receiver
A +m(?) (1)
o

o
On(2)

Y n(®)

x(?)
Envelope

y(t) = envelope of x(?)
= J[A+m(0)+n,(OF +n, (1)

Equation is too complicated

Must use limiting cases to put it in a form where noise and
message are added
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Small Noise Case

1st Approximation: (a) Small Noise Case

n(t)<<[A+m(t)]
Then
n(t)<<[A+m(t)+n_(¢)]

Then Identical to the post-
() =[A+m(t)+n ()] detection signalin the

case of synchronous

Thus P detection!
SNR, = ~ SNR

0

And in terms of baseband SNR:
P

A*+ P

S N Renv ~ S N Rbaseband

Valid for small noise only!
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Large Noise Case

« 2nd Approximation: (b) Large Noise Case

n(t)>>[A+m(t)]

* |solate the small quantity:

Y (0) = [A+m(2) +n ()} +n2(D)
=(A+ m(t))2 + nf (&) +2(A+m(t))n (t)+ nf (1)
(A+m(t))  2(A+m(t)n, (r)}

RO+ O+

2[A+m<r>]nc<r>j

(1) +m; (1)

:[n§<r>+ns<r>]{1+

Y (@) =[n(t)+ nf(t)]Ll +

E, (1) = n}(t) +n(t)

_ Ej(t)[l N 2[A+nf2z<z>]nc<t>)
E, (1)
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Large Noise Case: Threshold Effect

From the phasor diagram: n(t) = E (¢) cosf (¢)

Then:
N 2[A+m(t)]cosb, (¢)
W) =~E, (t)\/ I+ )
Use mzl+§forx<<l
N [A+m(t)]cosb (1)
y(1) = En(f)(l + £ (1) j

=FE (t)+[A+m(t)]cosb (?)

Noise is multiplicative here!
No term proportional to the message!

Result: a threshold effect, as below some carrier power level (very
low A), the performance of the detector deteriorates very rapidly.
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Summary

(De-) Modulation | Output | Transmitted Ba;epand Iil“m e Df}kﬂt,
Format SNR Power Relerence (= Output SNR /
SNR Reference SNR)
AM Coherent P A +P 4 +P P__;
Detection 2N W 2 N W A +P
DSB-SC Coherent | 4P AP AP |
Detection 2NV ) 2N,
SSB Coherent A'P AP A'P !
Detection ANW 4 AN W
AM ]j:nvelﬁpe p £ap £ 4P p
Detection (Small | 3 N7 _ T 5 <1
Noise) “To - =¥ A +P
AM l?:nvelnpe £ap £ ap
Detection (Large Poor = Poor
. ) _J.ﬁ'rT W
Noise) - 0

A: carrier amplitude, P: power of message signal, N,: single-sided PSD of noise,
W. message bandwidth.
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Outline

Recap of FM Il FM 102.9 MHz

FM system model in noise

PSD of noise

References
— Notes of Communication Systems, Chap. 3.4.1-3.4.2.
— Haykin & Moher, Communication Systems, 5th ed., Chap. 6

— Lathi, Modern Digital and Analog Communication Systems,
3rd ed., Chap. 12
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Frequency Modulation

Fundamental difference between AM and FM:

AM: message information contained in the signal
amplitude = Additive noise: corrupts directly the
modulated signal.

FM: message information contained in the signal
frequency = the effect of noise on an FM signal is
determined by the extent to which it changes the
frequency of the modulated signal.

Consequently, FM signals is less affected by noise than
AM signals
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Revision: FM

« A carrier waveform

s(t) = A cos[ B(0)]
— where 6(¢): the instantaneous phase angle.
When
s(t) = A cos(2nft) = O(t) =2nf't
we may say that

do 1 do
_:2 — _
dt 7 =7 27 dt

Generalisation: instantaneous frequency:

1 o)
27 dt

fi() =

93



FM

In FM: the instantaneous frequency of the carrier varies
linearly with the message:

JO) =+ kym(?)

— where £, is the frequency sensitivity of the modulator.
Hence (assuming 6(0)=0):

0.0)=2x[ " f(2)dr =2z f1+27k, [ 'm(r)dr

Modulated signal:

s(t) = Acos[2fy’ct + 27k, jotm(f)dr}
Note:

— (a) The envelope is constant
— (b) Signal s(t) is a non-linear function of the message signal m(t).
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Bandwidth of FM

m, = max|m(f)|: peak message amplitude.
f. — kym, < instantaneous frequency < f. + k.m,

Define: frequency deviation = the deviation of the
iInstantaneous frequency from the carrier frequency:
Af =kem,
Define: deviation ratio:
LB=ANTW
— W: the message bandwidth.

— Small B: FM bandwidth ~ 2x message bandwidth (narrow-band FM)
— Large B: FM bandwidth >> 2x message bandwidth (wide-band FM)

Carson’s rule of thumb:

B =2W(+1)=2(Af+ W)
— f<<1 = B;=2W (as in AM)
— f>>1 = B,=2Af
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FM Receilver

x(1) v(r) | Baseband
: FM. Banq-pass ——2» | imiter p—3= Discriminator ——={ low-pass %—O.Utpm
signal s(r) + filter filter signal
+

Noise

n(t)

« Bandpass filter: removes any signals outside the bandwidth of fc
+ B,/2 = the predetection noise at the receiver is bandpass with a
bandwidth of B;.

« FM signal has a constant envelope = use a limiter to remove
any amplitude variations

« Discriminator: a device with output proportional to the deviation in the
instantaneous frequency = it recovers the message signal

 Final baseband low-pass filter: has a bandwidth of W= it
passes the message signal and removes out-of-band noise.
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Linear Argument at High SNR

FM is nonlinear (modulation & demodulation), meaning superposition
doesn’t hold.

Nonetheless, it can be shown that for high SNR, noise output and
message signal are approximately independent of each other:
Output = Message + Noise (i.e., no other nonlinear terms).

Any (smooth) nonlinear systems are locally linear!
This can be justified rigorously by applying Taylor series expansion.

Noise does not affect power of the message signal at the output, and
vice versa.

= We can compute the signal power for the case without noise, and
accept that the result holds for the case with noise too.

= We can compute the noise power for the case without message,
and accept that the result holds for the case with message too.
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Output Signal Power Without Noise

* Instantaneous frequency of the input signal:
J; = J. +k,m(1)
e Output of discriminator:
ke ,m(t)
« S0, output signal power:
Py =k;P
— P the average power of the message signal
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Output Signal with Noise

* In the presence of additive noise, the real
predetection signal is

x(t) = Acos [27rfct + 27k, jot m(r)dt}
+n,(t)cosQLrft)—n (t)sin(2r f 1)
It can be shown (by linear argument again): For high SNR,

noise output is approximately independent of the message

signal

= In order to calculate the power of output noise, we may
assume there is no message

= I.e., we only have the carrier plus noise present:

X(t)= Acos(2af t)+n (t)cos(2nf t) —n (t)s(2xf 1)
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Phase Noise

Phasor diagram of
the FM carrier and |
noise signals 0 0(0)

* |nstantaneous phase noise:

. n(1)
G =t

 For large carrier power (large A):
_oan(@) n()
0,(t) = tan =
« Discriminator output = instantaneous frequency:

1 do.() 1 dnyJt)
2 dt 2w A dt

fi(0)=
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Discriminator Output

The discriminator output in the presence of both
signal and noise:

What is the PSD of

Fourier theory:
it x(t) & X(f)
PO & jprpr(r)

dt

then

Differentiation with respect to time = passing the signal
through a system with transfer function of H(f) =2z f
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Noise PSD
« |t follows from (2.1) that
S,()=H( S, (f)
— S(f): PSD of input signal
— S (f): PSD of output signal
— H(f): transfer function of the system
e Then: {PSD of nd(t)}=|j272'f ° X{PSD of ns(l‘)}
{PSD of n (1)} = {NO within band i%}

{PSD of n, (1)} =| 27 f | xN, f|<B,/2

TA dt 2 A
* After the LPF, the PSD of noise output n (¢) is restricted in

the band =W

fpsoot 0= 401 (1Y e, - L,

Sy, (f) =%No =W 6.1)
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Power Spectral Densities

Sns() Sy (f) Sy (£)

N

(@) (b) ()

(a) Power spectral density of quadrature component n((t) of narrowband noise n(t).
(b) Power spectral density of noise n(f) at the discriminator output.
(c) Power spectral density of noise n(t) at the receiver output.
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Outline

Derivation of FM output SNR
Pre/de-emphasis to improve SNR
Comparison with AM

References
— Notes of Communication Systems, Chap. 3.4.2-3.5.
— Haykin & Moher, Communication Systems, 5th ed., Chap. 6

— Lathi, Modern Digital and Analog Communication Systems,
3rd ed., Chap. 12
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Noise Power
Average noise power at the receiver output:
w
By=[, Sy (df

Thus, from (6.1)
2N W
34°

w f2
Po=], m Nodf =

Average noise power at the output of a FM receiver
1

carrier power A’
A 1 = Noise|, called the quieting effect

oC

(7.1)
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Output SNR
Since P, =k;P , the output SNR

p. 34°k:P
SNR, =3 =—-7—=SNR,,
P, 2NW
Transmitted power of an FM waveform:
AZ
PT == 7
P k,m
From SNR, , =—T—and f=-1-2:
N W w

2

3k2P , P
SNRpyy =237 SNRysserana = 38" —5 SNRosopana

2

p

o« B*SNR,, .. . (could be much higher than AM)
Valid when the carrier power is large compared with the
noise power
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Threshold effect

The FM detector exhibits a more pronounced threshold
effect than the AM envelope detector.

The threshold point occurs around when signal power is
10 times noise power:

AZ
=10, B.=2W ([ +1
IN.B, r (f+1)

Below the threshold the FM receiver breaks (i.e.,
significantly deteriorated).

Can be analyzed by examining the phasor diagram

P‘l
x(1) r(1)

. o ns(t)
(1) (1)

0
! A P, ) n (1)
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Qualitative Discussion

* As the noise changes randomly, the point P, wanders
around P,
— High SNR: change of angle is small

— Low SNR: P, occasionally sweeps around origin, resulting in
changes of 27 in a short time

lllustrating impulse like
comnnnante in 9’(1‘\ — nl@/f\/nlf
UUIIIVUI InvVIETWOD 1] \I.’ \I.’lul.

|

|

i

|

L produced by changes of 27 in
i 0 (t); (a) and (b) are graphs of
|

|

|

|

|

@ (t) and @’ (t), respectively.

0'(1)
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Improve Output SNR

Sy, () Suf)

N

W 0 W | —W 0 W

PSD of the noise at the detector output « square of
frequency.

PSD of a typical message typically rolls off at around 6 dB
per decade

To increase SNRg

— Use a LPF to cut-off high frequencies at the output
 Message is attenuated too, not very satisfactory

— Use pre-emphasis and de-emphasis

 Message is unchanged

« High frequency components of noise are suppressed
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Pre-emphasis and De-emphasis

Pre-emphasis FM + FM De-emphasis| . Message
m(t) = cior o (f) 1 transmitter ( : receiver > filter, H (f) plus noise
1 pe\. 1 de\.
+

Noise

w(t)

H,(f): used to artificially emphasize the high frequency components of
the message prior to modulation, and hence, before noise is
introduced.

H,(f): used to de-emphasize the high frequency components at the
receiver, and restore the original PSD of the message signal.

In theorya Hpe(f) OCf, Hde(f) X l/f
This can improve the output SNR by around 13 dB.

Dolby noise reduction uses an analogous pre-emphasis technique to
reduce the effects of noise (hissing noise in audiotape recording is
also concentrated on high frequency).
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Improvement Factor

Assume an ideal pair of pre/de-emphasis filters

H(N=VH/(f), |f|sW

PSF of noise at the output of de-emphasis filter

I
o [Ha(f)

Average power of noise with de-emphasis

: 1f|<B, /2, (recallSNo(f):Z—jNoj

/4 f2 )
P, = —|H N,d
=y e O Nods
Improvement factor (using (7.1))

3
2N0W

;b without pre/de-emphasis 2 2w’

w

P, with pre/de-emphasis - [ gi‘Hde(f)‘zNodf ) 3IV:Vf2 |Hde(f)|2 df
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Example Circuits

(a) Pre-emphasis filter
H,()=1+jf1f,
f,=1/2xrC), R<r, 2xfrCx1

(b) De-emphasis filter
Hde (f) =

Improvement

1
1+ jf/ £,

I 2w
30 A

_ w/f,)
AW/ f,)—tan” (W / f,)]

In commercial FM, W =15 kHz, f,=2.1 kHz
= =22 = 13 dB (a significant gain)

C
||
[
o0—=e +—o—— Amplifier ——0
Input r R Output
signal signal
O - O
(a)
o—\A—¢ 0
Input C = Output
signal ] signal
o - O
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Comparison of Analogue Systems

Assumptions:

— single-tone modulation, i.e.: m(t)=A4,, cos2xf 1);
— the message bandwidth W =f ;

— for the AM system, u=1;

— for the FM system, =5 (which is what is used in commercial FM
transmission, with Af'=75 kHz, and W = 15 kHz).

With these assumptions, we find that the SNR
expressions for the various modulation schemes become:

SNR 55 ¢ = SNRy i opana = SNRgp

1
S N RAM = 5 S N Rbaseband

75
S N RFM — % IB 2S N Rbaseband = 7 SNRbaseband

114



Performance of Analog Systems

(8/N)gy (dB)

70

60

50

44

30

20

10

Baseband
DSB
SSB

FM with deemphasis

FM, no deemphasis

AM

(envelope
detection)
- AM
- ~— (product
o -~ detection)
L | L 1 i | —
5 10 15 20 25 30 35

(S/N) baseband (dB)
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Conclusions

(Full) AM: The SNR performance is 4.8 dB worse than a
baseband system, and the transmission bandwidth is B, =
2W .

DSB: The SNR performance is identical to a baseband
system, and the transmission bandwidth is B, =2W.

SSB: The SNR performance is again identical, but the
transmission bandwidth is only B,= W.

FM: The SNR performance is 15.7 dB better than a
baseband system, and the transmission bandwidth is B, =
2( + )W = 12W (with pre- and de-emphasis the SNR
performance is increased by about 13 dB with the same
transmission bandwidth).
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Outline

Introduction to digital communication
Quantization (A/D) and noise

PCM

Companding

References
— Notes of Communication Systems, Chap. 4.1-4.3
— Haykin & Moher, Communication Systems, 5th ed., Chap. 7

— Lathi, Modern Digital and Analog Communication Systems,
3rd ed., Chap. 6
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Block Diagram of Digital Communication

Estimate of
Source of Message signal message S|gnaL User of
information ~ | information
o vy ] I ]
| | | |
| Source | | Source \
| encoder | | decoder |
| | | |
| | | M Estimate of |
I Source | I |
| code word | | Source |
| | | code word |
| | | |
Transmitter | Channel I | Channel } Receiver

I encoder | I decoder |
| | | ) \
| Channel | | A Estimate of |
| | | channel |

code word | ‘
| | code word
| | | |
| |
I Modulator I I Demodulator }
| | | |
| | | K \
l_____ i . _ J

Received
Waveform . signal
S hannel
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Why Digital?

» Advantages:

Digital signals are more immune to channel noise by using channel
coding (perfect decoding is possible!)

Repeaters along the transmission path can detect a digital signal
and retransmit a new noise-free signal

Digital signals derived from all types of analog sources can be
represented using a uniform format

Digital signals are easier to process by using microprocessors and
VLSI (e.g., digital signal processors, FPGA)

Digital systems are flexible and allow for implementation of
sophisticated functions and control

More and more things are digital...

» For digital communication: analog signals are converted to
digital.
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Sampling

* How densely should we sample an analog signal so that
we can reproduce its form accurately?

A signal the spectrum of which is band-limited to " Hz,
can be reconstructed exactly from its samples, if they are
taken uniformly at a rate of R >2W Hz.

* Nyquist frequency: f, =2W Hz

N AR
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Quantization

* Quantization is the process of transforming the sample
amplitude into a discrete amplitude taken from a finite set
of possible amplitudes.

* The more levels, the better approximation.

« Don't need too many levels (human sense can only detect
finite differences).

* Quantizers can be of a uniform or nonuniform type.

I
Continuous Quantizer Discrete ° ° PP .

sample m g(*) sample v my, _ 1 mp U, My 4 My 4o

(a) (b)
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Quantization Noise

* Quantization noise: the error between the input signal and
the output signal

\
-él D 1 Input wave

4
4

2 Quantized output

Magnitude —

Error N\

Difference between
curves 1 &2




Variance of Quantization Noise

A: gap between quantizing levels (of a uniform quantizer)

g. Quantization error = a random variable in the range
A, A
2 1775

If A is sufficiently small, it is reasonable to assume that ¢ is
uniformly distributed over this range:

-

| A A
—, ——<g<—
Jo(@) =1 A 2 2
. . 0, otherwise
Nolse variance :
o0 1 par
Py =E{e'}=[ q'/,(q)dq = NN
_lq_3A/2 _l A3_(—A)3__A2
A3, Al24 24 | 12
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SNR

Assume: the encoded symbol has n bits
— the maximum number of quantizing levels is L =2"
— maximum peak-to-peak dynamic range of the quantizer = 2"A

P: power of the message signal

m, = max |m(f)|: maximum absolute value of the message
signal

Assume: the message signal fully loads the quantizer:

m, :%2%\:2”% (8.1)

SNR at the quantizer output:

ovg =B P _12P

P, A/12 A
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. m 2m 4m*
From (8.1) A=—P — P A% = p
2n—l 211 2272
= SNR = 125 = 312) 2% (8.2)
° 4mp mp
22n
 IndB,

SNR (dB)=10log,,(2°")+10log s
0 10 10

P
2
P
=20nlog,, 2+10log,, [ }

=6n +1010g10( J (dB)
mp

 Hence, each extra bit in the encoder adds 6 dB to the output SNR
of the quantizer.

» Recognize the tradeoff between SNR and n (i.e., rate, or bandwidth).
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Example

Sinusoidal message signal: m(t)=A, cos(2xf, ).
Average signal power:

p=th
2
Maximum signal value: m, =4,.
Substitute into (8.2):
34; 3

SNR, == 2 = 2 9%
2427 2

In dB
SNR (dB)=6n+1.8dB

Audio CDs: n=16= SNR > 90 dB
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Pulse-Coded Modulation (PCM)

Source of PCM signal

[ - Low-pass
ﬁﬁ.loentln.?:;)sl;s e — filtgr —» Sampler = Quantizer —==~ Encoder p—= applied io
signal ° channel input

(a) Transmitter

Final Regeneration R tructi

channel —=»| "egener —»{ Decoder [—a= MECONSIUCHON L_o) hastination

output circuit filter
(c¢) Receiver

« Sample the message signal above the Nyquist
frequency

* Quantize the amplitude of each sample

 Encode the discrete amplitudes into a binary
codeword

« Caution: PCM isn’t modulation in the usual sense; it's a

type of Analog-to-Digital Conversion.
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The PCM Process

Code Quantization

wmber  level m{1), volts
4 - m()
7 35 it /
6 25 L
5 // \\
5 1.5 =
4 05 A4 . \\
. 0 ' ] \\ !
3 -05 : ; : ! 'N 1
~15 | | : | l
? -2 [ { i i i Y
] 1
1 -25 : f h ; | \\
"'3 v Il T : T 4 ;
0 ~35 : ; : : : T
-4 : 'r | : : —
: | | : : | |
Samgple value 13 36 2.3 0.7 -07 —24 -34
Nearest quantization level 1.5 35 2.5 0.5 -05 -25 -35
Code number 5 7 6 4 3 1 0
Binary representation 101 111 110 100 011 001 000
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Problem With Uniform Quantization

* Problem: the output SNR is adversely affected by peak to
average power ratio.

» Typically small signal amplitudes occur more often than
large signal amplitudes.

— The signal does not use the entire range of quantization levels
available with equal probabilities.

— Small amplitudes are not represented as well as large amplitudes,
as they are more susceptible to quantization noise.
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Solution: Nonuniform quantization

* Nonuniform quantization uses quantization levels of
variable spacing, denser at small signal amplitudes,
broader at large amplitudes.

uniform nonuniform
(&) (b)
. quantized A quantized

o i

re—

f. N
L alx) alz)
d| ra £| dl .{l £| d| L ; oL A
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Companding = Compressing + Expanding

A practical (and equivalent) solution to nonuniform quantization:
— Compress the signal first

— Quantize it (using a uniform quantizer)

— Transmit it

— Expand it

Companding is the corresponding to pre-emphasis and de-emphasis
scheme used for FM.

Predistort a message signal in order to achieve better performance in
the presence of noise, and then remove the distortion at the receiver.

The exact SNR gain obtained with companding depends on the exact
form of the compression used.

With proper companding, the output SNR can be made insensitive to
peak to average power ratio.
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Normalized output, |v|

| | | | " | | | |
0 0.2 0.4 0.6 0.8 10 O 0.2 0.4 0.6 0.8 1.0

Normalized input, |m| Normalized input, |m]

(a) (b)

(a) u-law used in North America and Japan, (b) A-law used in most countries
of the world. Typical values in practice (T1/E1): y = 255, A= 87.6.
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Applications of PCM & Variants

* Speech:
— PCM: The voice signal is sampled at 8 kHz, quantized into 256
levels (8 bits). Thus, a telephone PCM signal requires 64 kbps.
* need to reduce bandwidth requirements

— DPCM (differential PCM): quantize the difference between
consecutive samples; can save 8 to 16 kbps. ADPCM (Adaptive
DPCM) can go further down to 32 kbps.

— Delta modulation: 1-bit DPCM with oversampling; has even lower
symbol rate (e.g., 24 kbps).

« Audio CD: 16-bit PCM at 44.1 kHz sampling rate.

« MPEG audio coding: 16-bit PCM at 48 kHz sampling rate
compressed to a rate as low as 16 kbps.
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Demo

« Music playing in Windows Sound Recorder Q)
&) CountryRoadz0.wav - Sound Rec... [Bi[El B3
Save if: |!{_‘} Comm2 j 4= % Ef- File Edit Effects Help
Fosition: _ ‘ Length:
E.00 2ec. 20,00 zec.
|

Sound Selection |

MHame:
I[untitled] j Save.-’-‘-.s...l Femaove |
|
Fornat: PCH LI -4 | 3 | . | ----- - ------- | ® |

. Mezsenger Audio Codec
Athributes: Microsoft ADPCH
Microgzoft G.723.1
MPEG Layer-3

My Documents

Sound Selection

I arme:

My Computer I[untitled] j Save Az, | Hemoyve |
Farmat: |F'Eh-1 j

File name: countm 20 way - Save |
I . J Attributes: 8.000 kHz, 8 Bit, Steren 15 kbifzec j
[ Cancel | 5.000 kHz & Bit. Mono 7kbisec
2000 kHz, 8 Bit, Steren 15k

Save az bype; ISDunds [* wav)
Format: PCM 44100 kHz, 18 Bit, Maona Change... 2.000 kHz. 16 Bit, Mono 1
4' . |8000kHz 16 Bit. Stereo A1 kbfzec L]
11.025 kHz. 8 Bit, Mono 10kbfsec ™
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Summary

 Digitization of signals requires
— Sampling: a signal of bandwidth W is sampled at the Nyquist
frequency 2W.
— Quantization: the link between analog waveforms and digital
representation.
* SNR (under high-resolution assumption)

SNR (dB)=6n+10log,, {3—};} (dB)
m

p

« Companding can improve SNR.

« PCM is a common method of representing audio signals.

— In a strict sense, “pulse coded modulation” is in fact a (crude)
source coding technique (i.e, method of digitally representing
analog information).

— There are more advanced source coding (compression)
techniques in information theory.
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Outline

* Line coding

 Performance of baseband
digital transmission
— Model
— Bit error rate

» References

— Notes of Communication
Systems, Chap. 4.4

— Haykin & Moher, Communication
Systems, 5th ed., Chap. 8

— Lathi, Modern Digital and Analog
Communication Systems, 3rd ed.,
Chap. 7
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Line Coding

The bits of PCM, DPCM etc need to be converted into
some electrical signals.

Line coding encodes the bit stream for transmission
through a line, or a cable.

Line coding was used former to the wide spread
application of channel coding and modulation techniques.

Nowadays, it is used for communications between the
CPU and peripherals, and for short-distance baseband
communications, such as the Ethernet.
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Line Codes

Unipolar nonreturn-to-zero
(NRZ) signaling (on-off
signaling)

Polar NRZ signaling

Unipolar Return-to-zero (RZ)
signaling

Bipolar RZ signaling

Manchester code

Binary data

A

0 1 1

0

—==

A

0

-A

o 2=

(e)

Time —
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Analog and Digital Communications

« Different goals between analog and digital communication
systems:

— Analog communication systems: to reproduce the transmitted
waveform accurately. = Use signal to noise ratio to assess the
quality of the system

— Digital communication systems: the transmitted symbol to be

identified correctly by the receiver = Use the probability of error of
the receiver to assess the quality of the system
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Model of Binary Baseband
Communication System

+ . Decis — Say 1 ify>T
e HOhbass 0 No—s TR
s ilter . .
+ Sample at —> Say Oify <T
timer =T, T
White Gaussian Threshold
noise n(t) T

« We only consider binary PCM with on-off signaling: 0 — 0
and 1 — A with bit duration 7;.

e Assume:

— AWGN channel: The channel noise is additive white Gaussian,
with a double-sided PSD of N,2.

— The LPF is an ideal filter with unit gain on [-W, W].

— The signal passes through the LPF without distortion
(approximately).
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Distribution of Noise

Effect of additive noise on digital transmission: at the
receiver, symbol 1 may be mistaken for 0, and vice versa.
= bit errors

What is the probability of such an error?

After the LPF, the predetection signal is
y(t) = s(2) + n(?)
— S§(f): the binary-valued function (either O or A volts)
— n(t): additive white Gaussian noise with zero mean and variance
o’ = JFVZV N,/2df =N W
Reminder: A sample value N of n(t) is a Gaussian random
variable drawn from a probability density function (the

normal distribution):

2
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Decision

Y. a sample value of y(7)
If a symbol 0 were transmitted: y(¢) = n(¢)
— Y will have a PDF of N (0, ¢?)

If a symbol 1 were transmitted: y(¢) = 4 + n(¢)
— Y will have a PDF of N (4, ¢°)

Use as decision threshold T :
— if 'Y <T, choose symbol O
— if 'Y >T, choose symbol 1
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Errors

Two cases of decision error:
— (i) a symbol 0 was transmitted, but a symbol 1 was chosen
— (ii)a symbol 1 was transmitted, but a symbol 0 was chosen

b, (v) f,(v)

(a) (b)

Probability density functions for binary data transmission in noise:
(a) symbol 0 transmitted, and (b) symbol 1 transmitted. Here T'= 4/2.
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Case (1)

* Probability of (i) occurring = (Probability of an error,
given symbol 0 was transmitted) X (Probability of a O to
be transmitted in the first place):

p(1) =Py X pg
where:
— po- the a priori probability of transmitting a symbol O

— P, the conditional probability of error, given that symbol 0 was
transmitted:

2
Feo = ITG ﬂexp[ 207 jdn
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Case (li)

* Probability of (ii) occurring = (Probability of an error,
given symbol 1 was transmitted) X (Probability of a 1 to
be transmitted in the first place):

p(1) =P, X p,
where:
— p,: the a priori probability of transmitting a symbol 1

— P,,: the conditional probability of error, given that symbol 0 was
transmitted:
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Total Error Probability

« Total error probability:

P(T)= Py T Puy
=pF,+({-p)F,

:plj. 1 exp(—(n = Ay jdn+(1 pl)j

= o\ 27T 2

« Choose T so that P, (7) is minimum:
dP(T)
dT

G\/_exp( ”2 jdn

=0
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Derivation

* Leibnitz rule of differentiating an integral with respect
to a parameter: if

I(A) = j " £ A)dx

(4)

* then
dl(A) db(A da(A b Of (x5 A
P rwann - rann+ [T ax
* Therefore
dP (T) 1 (T — A | 1 T? 0o
dT pla 27 =P 207 ( pl)J\/geXp 2067 |
pl_ﬁm)_T%wT;A)j
- D 20

TP TP A +2TAj _exp(_ A(2T—A)j

20° 20°
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Optimum Threshold

In—£1 =—A(2T;A) = 2072 = 4QT-4) =
1-p, 20 1-p,
2 2
_20 -2 =274 = 7= 1n- b +£
A 1-p, A4 l1-p 2

* Equi-probable symbols (p,=p,=1-—p,)=>T =A4/2.
* For equi-probable symbols, it can be shown that P,,=

rahhAalhil
ropnaniii

since p,

:*\ r 4
L

y O
E, =P+ Puy = Dby + P, =E = F,
=p,=1/2, and P, =
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Calculation of P,

Define a new variable of integration
n 1

z=—=>dz=—dn=dn=0odz
o o

— When n=A4/2, z = A/20).
— When n=o, z =oo0.

Then P, =

—Z /2
Z
o / IA/(2G)
-z7/2
L
277 A/(20)

We may express P,, in terms of the Q-function:

O(x) = J_ j exp(——zj dt

Then:
r-o5r
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Example

Example 1: A/6 =7.4=> P, =107*

= For a transmission rate is 10° bits/sec, there will be an
error every 0.1 seconds

Example 2: A/6 =11.2= P, =1078

= For a transmission rate is 10° bits/sec, there will be an
error every 17 mins

A/o =7.4: Corresponds to 20 log,,(7.4) =17.4 dB
A/o = 11.2: Corresponds to 20 log,,(11.2) =21 dB

= Enormous increase in reliability by a relatively small
increase in SNR (if that is affordable).
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Probability of Bit Error

1.0

a
L]
p —
<|v <o
- el I Y|
.hii\...[i] Ilf?_ &
_ .n.t\.\_. I >
\\\
P 0
WEccfi0 NN DR N NS R R L
\ ™
\ <
—d
o
i
¥ [
< - 0 B_ : o o
&5 _.U | I l_.
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—f

T 40418 Jo Aqeqoid
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Q-function

Upper bounds and good
approximations:

10" ¢
1 _2/0 10_1_
X)<—e " ,x20 5

— which becomes tighter for 10
large x, and 107

| — bl —Q(x) D
< > .
clsge x=t 10°F | —exp(-r2)sq(2nx
T el exp(-x12)/2 .
— which is a better upper .
bound for small x. 10" L l l l
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Applications to Ethernet and DSL

100BASE-TX

— One of the dominant forms of fast Ethernet, transmitting up to 100

Mbps over twisted

pair.

— The link is a maximum of 100 meters in length.
— Line codes: NRZ - NRZ Invert > MLT-3.

 Digital subscriber line (DSL)

— Broadband over twist pair.

— Line code 2B1Q achieved bit error rate of 107 at 160 kbps.

— ADSL and VDSL adopt discrete multitone modulation (DMT) for

higher data rates.

Digital

—_——— ————————— e —

Computer subscriber
line

++

Central
office

Digital

line

Broadband

subscriber | backbone

network

SONET

Internet
service
provider
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Outline

ASK and bit error rate
FSK and bit error rate

PSK and bit error rate

References
— Notes of Communication Systems, Chap. 4.5
— Haykin & Moher, Communication Systems, 5th ed., Chap. 9

— Lathi, Modern Digital and Analog Communication Systems,
3rd ed., Chap. 13
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Digital Modulation

* Three Basic Forms of Signaling Binary Information

Binary
data

(a) Amplitude-shift O \ [\ [\ [\ ﬁ h [\ ﬁ h [\ ﬂ |
TAVAVAVERRRVAY

keying (ASK). U U
(b) Phase-shiftkeying 1N MV ANAAAANALAAA AL

(PSE) RAVARAYAAVAYATAVAVALVAVIES

(c) Freguency-shift O\ f\ [\ [\ [\ f\ [\ [\ [\ /\ f\ [\ [\ f
keying (FSK). (VAVAVAVATAVEATRVERAVATAY
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Message
source

Demodulation

Carrier wave

Signal s

==l {1 ANSMISSION  [reee

encoder

Transmitter

Communication
channel

|
| Estimate
[

X Signal

———t=m] Detector f—sme] transmisSion jrjr—m

decoder

Receiver

« Coherent (synchronous) demodulation/detection
Use a BPF to reject out-of-band noise

M VaYaYal\Vi

'Fl't\ﬂ
HCYuciivy

Use a LPF
Requires carrier regeneration (both frequency and phase

Multiply the incoming waveform with a cosine of the carrier

synchronization by using a phase-lock loop)

« Noncoherent demodulation (envelope detection etc.)
— Makes no explicit efforts to estimate the phase
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ASK

 Amplitude shift keying (ASK) = on-off keying (OOK)

So(?) 0
s|(t) = Acos(2xrf.t)
or s(t) = A()cos(2aft), A(r) € {0, 4}

 Coherent detection

Low-pass ,
> H(w) | ; % filter

2c0s w.t

0 f;
* Assume an ideal band-pass filter with unit gain on [f.— W, f,

+W]. For a practical band-pass filter, 2% should be

Interpreted as the equivalent bandwidth.
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Coherent Demodulation

* Pre-detection signal:

x(t) =s(t)+n(t)
= Acos2Qr ft)+n_ (t)cos(2r f t)—n (¢)sin(27x f 1)

=[A({)+n_(t)|cos(Lr f.t)—n (t)sm(2x f 1)

« After multiplication with 2cos(27f.1):

y()=[A(t)+n ()2cos’ 2x f.t)—n_(£)2sin(27x f 1) cos(2x f 1)
=[A(t)+n,(t)]|(1+cos(4z f t))—n (¢)sin(4r f t)

« After low-pass filtering:

y(t) = A@t)+n.(2)
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Bit Error Rate

Reminder: The in-phase noise component » (¢) has the
same variance as the original band-pass noise n(7)

— The received signal is identical to that for baseband digital
transmission

— The sample values of Y(¢) will have PDFs that are identical to
those of the baseband case

For ASK the statistics of the receiver signal are identical to
those of a baseband system

The probability of error for ASK is the same as for the
baseband case

Assume equiprobable transmission of Os and 1s.

Then the decision threshold must be A2 and the
probability of error is given by: y
Pe,ASK — Q( )

20
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PSK

Phase shift keying (PSK)

s(t) =A(t) cosrfr), A(t) € {—A, A}
Use coherent detection again, to eventually get the
detection signal:

y(t)=A(t)+n.(1)
Probability density functions for PSK for equiprobable 0s
and 1s in noise (use threshold 0 for detection):

— (a): symbol 0 transmitted

— (b): symbol 1 transmitted
Afy(v)

Probability
of error

Probability
of error
P,

(a) (b) 163



Analysis

« Conditional error probabilities:

e 1 (n+Ay
BO_‘L o 27Zexp T2 )
o 1 (n— Ay’
P = exp| — n
el j_wg\/Z[ p[ 202

e In the first set fzzn+A:>dn:dﬁandwhennzo,ﬁ:A

rr\/— J e ( 2: ]dﬁ

 |nthe second set n=—-(n—A)=-n+ A= dn=-dn
whenn=0,n=A4,andwhenn=—-w, n=+w0:

]( l)dn—a\/_j exp( i Jdn
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Bit Error Rate

F,=F, PePSK_ AJ\/—GX{ jd

Change variable of integration to z =n/oc = dn = odz
and whenn=A4, z =A/0. Then:

| o 4
Pe,PSK = ﬁj‘ée dz = Q(;)

So:

_ % [ exp(~*/2)dt
72' X
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FSK

* Frequency Shift Keying (FSK)
So(t) = A cosQxfyt), if symbol 0 is transmitted
s|(t) = AcosQxfit), if symbol 1 is transmitted

« Symbol recovery:

— Use two sets of coherent detectors, one operating at a frequency f,
and the other at f,.

2 cos Wit

— Hylw) —-r-(%}—» Ipf
f

Coherent FSK demodulation.

The two BPF’'s are non- — T y
overlapping in frequency *
spectrum

\—b- H“((‘)) '——F{?H |p‘f
f\ 2 cos wqt
P

f1
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Output

Each branch = an ASK detector

A+noise if symbolpresent

LPF output on each branch = , ,
noise if symbol not present

ny(f): the noise output of the top branch
n,(?): the noise output of the bottom branch
Each of these noise terms has identical statistics to

n()-

Output if a symbol 1 were transmitted
y=y () =4+ [n(t) — ny(®)]

Output if a symbol 0 were transmitted
y=yo() =— A+ [n(t) — ny0)]
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Bit Error Rate for FSK

Set detection threshold to O
Difference from PSK: the noise term is now n(¢) — ny(?).

The noises in the two channels are independent because
their spectra are non-overlapping.

— the proof is done in the problem sheet.

— the variances add.

— the noise variance has doubled!

Replace o2 in (172) by 262 (or ¢ by V2 ¢)

A
Pe,FSK - Q (E)
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The Sum of Two R.V.

Noise is the sum or difference of two independent zero
mean random variables:

— X4,: a random variable with variance 0,2

— X,: a random variables with variance 0,°

What is the variance of y =x, = x,?
By definition
o, =E{y’}—E{y}" =E{(x, £x,)’}
= E{x’ +2x,x,+ %} = E{x'} T E{x,x,} + E{x}
For independent variables: E{x,x,} = E{x,}E{x,}

For zero-mean random variables:
E{x;} =E{x; =0= E{x\x,} =0
So
O'y2 =E{(x}+E{x;} =0 +0,
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Comparison of Three Schemes

10"

10% - Baseband, ASK

10° -

Pe

10° -

ia" |

10-1I]

| | | | | | | | |
0 2 4 G 8 10 12 14 16 18 20 22
Alo (dB)
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Comment

To achieve the same error probability (fixed P,):

PSK can be reduced by 6 dB compared with a baseband
or ASK system (a factor of 2 reduction in amplitude)

FSK can be reduced by 3 dB compared with a baseband
or ASK (a factor of V2 reduction in amplitude)

Caution: The comparison is based on peak SNR. In terms
of average SNR, PSK only has a 3 dB improvement over
ASK, and FSK has the same performance as ASK
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Q-function
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Examples

« Consider binary PSK modulation. Assume the carrier
amplitude A = 1 v, and noise standard deviation ¢ = 1/3.
Determine the bit error probability.

— Answer: P, =1.03 x 103

« Now suppose the bit error probability is 10. Determine
the value of A/c.

— Answer: Alc = 4.3.
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Application: GMSK

« Gaussian minimum shift keying (GMSK), a special form of
FSK preceded by Gaussian filtering, is used in GSM
(Global Systems for Mobile Communications), a leading
cellular phone standard in the world.

— Also known as digital FM, built on some
of FM-related advantages of AMPS,
the first-generation analog system ] . .
(30 KHz bandwidth).

Ll
— I .
Binary data are passed through a E E mlml

Gaussian filter to satisfy stringent
requirements of out-of-band radiation.

— Minimum Shift Keying: its spacing between the two frequencies of
FSK is minimum in a certain sense (see problem sheet).

— GMSK is allocated bandwidth of 200 kHz, shared among 32 users.
This provides a (30/200)x32=4.8 times improvement over AMPS.
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Outline

Noncoherent demodulation of ASK

Noncoherent demodulation of FSK

Differential demodulation of DPSK

References
— Haykin & Moher, Communication Systems, 5th ed., Chap. 9

— Lathi, Modern Digital and Analog Communication Systems,
3rd ed., Chap. 13
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Noncoherent Demodulation

Coherent demodulation assumes perfect synchronization.
— Needs a phase lock loop.

However, accurate phase synchronization may be difficult
In @ dynamic channel.

— Phase synchronization error is due to varying propagation delays,
frequency drift, instability of the local oscillator, effects of strong
noise ...

— Performance of coherent detection will degrade severely.

When the carrier phase is unknown, one must rely on non-
coherent detection.
— No provision is made for carrier phase recovery.

The phase @ is assumed to be uniformly distributed on [0,
27].
Circuitry is simpler, but analysis is more difficult!
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Noncoherent Demodulation of ASK

Signal
plus
noise
in

* Output of the BPF

 Recall

Bandpass
filter

| Envelope

detector

X,

W) = n(@)

Threshold
device

—— »Decision

t=nT,

when 0 is sent
y(@#) = n()+AcosQxfr) when 1is sent

n(t) = n_(£)cos(2z f.£)—n_(t)sin(27 £.)

 Envelope

R = \Jn(6) +n’(t)

R=\[(4+n, (1)) +n(t)

when 0 is sent

when1is sent
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Distribution of the Envelope

 When symbol 0 is sent, the envelope (that of the bandpass
noise alone) has Rayleigh distribution

f(r) :ée_’g/a"z), r=>0

 When symbol 1 is sent, the envelope (that of a signal +
bandpass noise) has Rician distribution

v 2, 2120 Ar
_ —(r"+47)/(207)
f(r)=—e""" IO( 2), r>0
o \ 0" )

* The first case dominates the error probability when
Al >>1.

179



Rayleigh Distribution

. Define a random variable R =~ X>+Y> where Xand Y
are independent Gaussian with zero mean and variance o

* R has Rayleigh distribution:
fo(r)= ?e_’”z/(zaz), r>0

Normalized Rayleigh distribution
0.4 —

fyw)

v=r/o

o2 SAV) = o fr(r)

I I
0 1 2 3

* Proving it requires change into polar coordinates:

Y
R=+X>+Y?, ®=tan_1}
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Derivation

Consider a small area dxdy = rdrd6. One has
Jro(r,0)drd0 = f, ,(x,y)dxdy = fy ,(x,y)rdrd0

1 _x2+y2
= ~e 20° rdrd 0
2no
Hence oy p
fro(rnO)=——e 2 =1 _¢ 2
ROM? 270’ 2o
pdf of R:
27 v —r—zz
fR(r):J.O fR,®(7‘,(9)d67:—ze 200 r>0
O
pdf of ® |

fo(0) = [ fro(r,0Mdr=——, 0<[0,27]

27
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Rician Distribution

* If X has nonzero mean A, R has Rician distribution:

(P +A)/(26%
fo(r)=Le"TEILE),  r20

where . ,r ,
I,(x)=5- . e *"do

is the modified zero-order Bessel function of the first kind.

0.6 —

05 Normalized Rician distribution

v=rlo
a=A/c

V) = o fp(r)

0.4
< 0.3
"‘--..’

0.2

0.1

0 1 2 3 4 5 6 7 8
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Derivation

« Similarly,
fR,@) (r,0)drd6 = fX,Y (x, y)rdrd6

1 (X—A)Z—I—y2
2
O
1 r?+A4% -2 Arcos@

= e 2 rdrd@

- 2
27wo

* Hence

r2+4%=2 Arcos@
r —
20
2 e
27O

fR,@(rae):

* pdf of R: Besseljf\unctlon
|

P2+ A>

o) = [ for0X0 = Lo 2
o)

Arcos@

ZLJ.ozﬂe i d@, r>0
7T
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Error Probability

Let the threshold be A/2 for simplicity.

The error probability is dominated by symbol O, and
IS given by

1 o0 14 2 2
P z_j _e—r /(2o )dl"
¢ nJdang?

The final expression

p - l e—Az/(SO'Z)

e, ASK ,noncoherent = 2

Cf. coherent demodulation

A 1

— ~A*/(807%)
[)e,ASK,COherent - Q <—e
20 2

Noncoherent demodulation results in some performance
degradation. Yet, for a large SNR, the performances of
coherent and noncoherent demodulation are similar.
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Noncoherent Demodulation of FSK

x(t) =

k

Sample at
ti =T,
Bandpass er=t
) Envelope
filter detector ©
centered at f,
R,
Y
—>-
Comparison
device
s
A
Band Ro
andpass
. Envelope .
filter detector S: e at
centered at f, >armpie d
timet =T,

If R, > R,,
choose 0
If R, <R,,

choose 1
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Distribution of Envelope

When a symbol 1 is sent, outputs of the BPFs
n@® = )
Y,(8) = n,(t) + A cosLxf)

Again, the first branch has Rayleigh distribution

le (n):%e—ﬁz/(zo—ﬂ, 7 >0
while the second has Rice distribution
ij (I’ ) __ —(rz +4%)/(20* )1 (Arz) r, > ()

Note the envelopes R, and R, are statistically independent.

186



Error Probability

Error occurs if Rice < Rayleigh
P, =P(R, <R))

. e o —(r2+4%)/(26%) A, N\ # —r21(20%)

=[], e Lo(GZ)me ™ dndr,

[P s —(n+4H(26%) AN v —r2126%)

_.0 ?e 2 IO(?) . ?e ! dl’idl"z

_ [ —(2r22+A2)/(20'2)I Ary

=] Ze (S,

_Le_Az/MJZ) Ooie_(szraz)/(sz)] (ﬂ)dx = 27" CZ_A/\/E

-2 0 o 0\ 52 X = 2> B
UbocCli ve L IC IIILUgld IU 1o d N\ilidll Ut Iblly

_1 —A%/(407)
})e,FSK,noncoherent T Ee

Cf. coherent demodulation

A 1 Az/ 2
— _ - (407)
Pe,FSK,Coherent - Q ( \/EO- < Ee
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DPSK: Differential PSK

 Itis impossible to demodulate PSK with an envelop
detector, since PSK signals have the same frequency and

amplitude.

« We can demodulate PSK differentially, where phase
reference is provided by a delayed version of the signal in
the previous interval.

- Differential encoding is essential: b, =b,_, x a,, where a,
b, € £1.

. b,
input R > » DPSK
signal
an bn-l g

Delay T, « cos(m,t)
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Differential Demodulation

signal

olus _»Ban_dpass . Loyvpass ;Thres.hold
noise filter filter device Decision
ona,
> Delay T,

Computing the error probability is cumbersome but
fortunately the final expression is simple:

1 A (26%)

e,DPSK — 7

— The derivation can be found in Haykin, Communication Systems,
4th ed., Chap. 6.

— Performance is degraded in comparison to coherent PSK.
Cf. coherent demodulation

E, psx = Q(éj < le_A2 20%)
o) 2
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lllustration of DPSK

Information symbols {a,} 1 -1 1 -1 1 -1 1 -1 1 1

{Bn1} T 01111111

Differentially encoded |, | | , | | 1T 111 1] 11
sequence {b,}

Traqsm|tted phase 0l ol = 0 Ol = | 0| 01O
(radlans)

Decision 1 -1 -1 1 -1 -1 1 1

Note: The symbol 1 is inserted at the beginning of the differentially encoded
sequence is the reference symbol.
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Summary and Comparison

Scheme Bit Error Rate
Coherent ASK 0(A/20)
Coherent FSK O(4N20)
Coherent PSK Q(A/ o)

Noncoherent Y5 exp(-A%/8 6%)
ASK

Noncoherent Y5 exp(-A%/4067)
FSK

DPSK Y5 exp(-4?/267)

Bit error rate (BER)

0.5

101

102

103

104

10-5

— | |
NN
h \ik Ccl)heren’lt
NG
\

Coherent PSK A \\\\ .
A\

\ \

\\\

Average SNR, dB

191



Conclusions

* Non-coherent demodulation retains the hierarchy of
performance.

* Non-coherent demodulation has error performance slightly
worse than coherent demodulation, but approaches
coherent performance at high SNR.

* Non-coherent demodulators are considerably easier to
build.
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Application: DPSK

WLAN standard IEEE 802.11b
Bluetooth?2

Digital audio broadcast (DAB): DPSK + OFDM (orthogonal
frequency division multiplexing)

Inmarsat (International Maritime Satellite Organization):
now a London-based mobile satellite company

)) :

inmarsat
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Outline

What is information theory?

Entropy
— Definition of information
— Entropy of a source

Source coding
— Source coding theorem
— Huffman coding

References
— Notes of Communication Systems, Chap. 5.1-5.4
— Haykin & Moher, Communication Systems, 5th ed., Chap. 10

— Lathi, Modern Digital and Analog Communication Systems, 3rd ed.,
Chap. 15
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Model of a Digital Communication System

Discrete
memoryless channel

|
|
|
!
1
f
|
|
|

|

|

|

|

|

|

: |
Information ) Source ! Channel s Waveform |
source coder coder | modulator :
| |

| |

] l [

| |

: !

1

I Wavetorm E

: channel :

| |

\ |

i l |

l |

l 1

I |

: | |
Information " Source ¢ Channel - Waveform :
user decoder decoder demodulator |

|

|

|

|

e e o w  w — — — — — — ——

196



What is Information Theory

C. E. Shannon, "A mathematical theory of
communication,” Bell System Technical
Journal, 1948.

Two fundamental questions in

communication theory:

— What is the ultimate limit on data compression?

— What is the ultimate transmission rate of reliable
communication over noisy channels?

Shannon showed reliable (i.e., error-free)

communication is possible for all rates below

channel capacity (using channel coding).

Any source can be represented in bits at any
rate above entropy (using source coding).
— Rise of digital information technology
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What is Information?

Information: any new knowledge about something
How can we measure it?

Messages containing knowledge of a high probability of
occurrence = Not very informative

Messages containing knowledge of low probability of
occurrence = More informative

A small change in the probability of a certain output should
not change the information delivered by that output by a
large amount.
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Definition

« The amount of information of a symbol s with
probability p:

I(s)= logl

P

* Properties:

— p=1=I(s)=0: a symbol that is certain to occur contains no
information.

— 0<p<1=0<I(s) <wo: the information measure is monotonic and
non-negative.

— p=p,; x p,=1(s)=1(p,) + I(p,): information is additive for
statistically independent events.
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Example

In communications, log base 2 is commonly used,
resulting in unit bit

Example: Two symbols with equal probability p, = p,
= 0.5

Each symbol represents I(s) =1og,(1/0.5)=1 bit of
information.

In summary:  [(s) =log, L pits
P

Reminder: From logs of base 10 to logs of base 2:

log,, x

log,, 2

log, x = =3.32log,, x
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Discrete Memoryless Source

« Suppose we have an information source emitting a
sequence of symbols from a finite alphabet:

S=18, 85 ..., Sk}

 Discrete memoryless source: The successive symbols
are statistically independent (i.i.d.)

 Assume that each symbol has a probability of
occurrence

K
pi» k=1..,K, suchthat ) p, =1
k=1
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Source Entropy

If symbol s, has occurred, then, by definition, we have received

1
[(s,)=log,—=—log, p,

bits of information. Pk

The expected value of I(s,) over the source alphabet
K K

E{I(s,)} = Zpkl(sk) = _Zpk log, p,
k=1 k=1

Source entropy: the average amount of information per source
symbol:

K
H(S)= _Zpk log, p,
k=1

Units: bits / symbol.
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Meaning of Entropy

What information about a source does its entropy give us?
It is the amount of uncertainty before we receive it.

It tells us how many bits of information per symbol we
expect to get on the average.

Relation with thermodynamic entropy
— Inthermodynamics: entropy measures disorder and randomness;
— Ininformation theory: entropy measures uncertainty.

— Some argue that to obtain 1 bit information, the minimum energy
needed is 1023 Joules/Kelvin degree (extremely cheap!).

— This may have implications on green computation.
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Example: Entropy of a Binary Source

e s, occurs with probability p
* §,. occurs with probability 1 —p.
« Entropy of the source:

H(S)=—(1-p)log,(1-p)—plog, p=H(p)

— H(p) is referred to as the 1.0

entropy function. 0a

__ 06
2
T

0.4

0.2

| |
0 0.2 04 05 0.6 0.8 1.0

P

0 | |
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Example: A Three-Symbol Alphabet

— A: occurs with probability 0.7
— B: occurs with probability 0.2
— C: occurs with probability 0.1

Source entropy:
H(S)=-0.7lo0g,(0.7)—0.210g,(0.2) - 0.110og,(0.1)
=0.7x0.515+0.2%x2.322+0.1x3.322

=1.157 bits/symbol

How can we encode these symbols in order to
transmit them?

We need 2 bits/symbol if encoded as

A = 00,B = 01,C = 10
Entropy prediction: the average amount of information is
only 1.157 bits per symbol.

We are wasting bits!
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Source Coding Theory

What is the minimum number of bits that are required to
transmit a particular symbol?

How can we encode symbols so that we achieve (or at
least come arbitrarily close to) this limit?

Source encoding: concerned with minimizing the actual
number of source bits that are transmitted to the user

Channel encoding: concerned with introducing redundant
bits to enable the receiver to detect and possibly correct
errors that are introduced by the channel.
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Average Codeword Length

[,: the number of bits used to code the k-th symbol
K: total number of symbols

p,. the probability of occurrence of symbol k
Define the average codeword length:

K
L= Zpklk

k=1
It represents the average number of bits per symbol in the
source alphabet.
An idea to reduce average codeword length: symbols that
occur often should be encoded with short codewords;
symbols that occur rarely may be encoded using the long
codewords.
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Minimum Codeword Length

* What is the minimum codeword length for a particular
alphabet of source symbols?
* In a system with 2 symbols that are equally likely:

— Probability of each symbol to occur: p =1/2
— Best one can do: encode each with 1 bit only: O or 1

* |n a system with n symbols that are equally likely:
Probability of each symbol to occur: p=1/n

* One needs L =log, n =1log, 1/p = — log, p bits to represent
the symbols.
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The General Case

S={s, ..., Sg: an alphabet

p,: the probability of symbol s, to occur
N : the number of symbols generated
We expect Np, occurrences of s,

Assume:

— The source is memoryless

— all symbols are independent

— the probability of occurrence of a typical sequence S, is:
A QN N1 4 NP ., Mp
PON) =Dy X Py P XX P F

All such typical sequences of N symbols are equally
likely

All other compositions are extremely unlikely to occur as N
— o0 (Shannon, 1948).
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Source Coding Theorem

« The number of bits required to represent a typical
sequence Sy IS

1
Ly = log, (S) = _logz(p1Np1 szsz X---XPKNPK)

N

=—Np, log, p, —Np, log, p, —...— Np, log, p,

K
= _szk log, p, = NH(S)

k=1

« Average length for one symbol: Z:%N

H(S) bits/symbol

* |Given a discrete memoryless source of entropy H(S),
the average codeword length for any source coding
scheme is bounded by H(S):

L>H(S)
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Huffman Coding

How one can design an efficient source coding
algorithm?

Use Huffman Coding (among other algorithms)
It yields the shortest average codeword length.

Basic idea: choose codeword lengths so that more-
probable sequences have shorter codewords

Huffman Code construction
— Sort the source symbols in order of decreasing probability.

— Take the two smallest p(x;) and assign each a different bit (i.e., O
or 1). Then merge into a single symbol.

— Repeat until only one symbol remains.

It's very easy to implement this algorithm in a
microprocessor or computer.

Used in JPEG, MP3...

211



Example

Symbol Stage | Stage Il Stage Il Stage IV Symbol Probability Code word
0 5o 0.4 00
L 0 1 55 0.2 11
S 0 T~ 1 5a 0.1 011
So 0.2 0.2 — 0.2
o\ 1 ®)
5 01— [™02—
. 011 Read diagram backwards

“ for codewords

« The average codeword length:

L=(2x04)+(2x0.2)+(2%x0.2)+(3x0.1)+(3x0.1)=2.2

* More than the entropy H(S) = 2.12 bits per symbol.
= Room for further improvement.
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Application: File Compression

« A drawback of Huffman coding is that it requires
knowledge of a probabilistic model, which is not always
available a prior.

* Lempel-Ziv coding overcomes this practical limitation and
has become the standard algorithm for file compression.

— compress, gzip, GIF, TIFF,
PDF, modem...

— A text file can typically be
compressed to half of its
original size.
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Summary

The entropy of a discrete memoryless information source

K
H(S)=-) p,log, p,
k=1

Entropy function (entropy of a binary memoryless source)
H(S)=—(1-p)log,(1-p)—plog, p=H(p)

Source coding theorem: The minimum average codeword
length for any source coding scheme is H(S) for a discrete

memoryless Source.

Huffman coding: An efficient source coding algorithm.
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Outline

« Channel capacity
— Channel coding theorem
— Shannon formula

« Comparison with
practical systems

* References
— Notes of Communication Systems, Chap. 5.5-5.6
— Haykin & Moher, Communication Systems, 5th ed., Chap. 10

— Lathi, Modern Digital and Analog Communication Systems,
3rd ed., Chap. 15
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Channel Coding Theorem

Shannon, “A mathematical theory of communication,”
1948

For any channel, there exists an information capacity C
(whose calculation is beyond the scope of this course).

If the transmission rate R < C, then there exists a
coding scheme such that the output of the source can
be transmitted over a noisy channel with an arbitrarily
small probability of error. Conversely, it is not
possible to transmit messages without error if R > C.

Important implication:

— The basic limitation due to noise in a communication channel is not
on the reliability of communication, but rather, on the speed of
communication.
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Shannon Capacity Formula

 For an additive white Gaussian noise (AWGN) channel,
the channel capacity is

bps

P
C=Blog, (1+SNR)=Blog, | 1+
0, (1+SNR) - g, 147

— B: the bandwidth of the channel
— P: the average signal power at the receiver
— N,: the single-sided PSD of noise

* Important implication: We can communicate error free
up to C bits per second.

« How can we achieve this rate?
— Design power error correcting codes to correct as many errors as
possible (the next two lectures).
— Use the ideal modulation scheme that does not lose information in

the detection process.
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Shannon Limit

« Tradeoff between power and bandwidth: to get the same

target capacity C, one may o
— Increase power, decrease bandwidth;
— Decrease power, increase bandwidth. °f

* What's the minimum power to
send 1 bps (i.e., C =1 bps)?

1/B <
L2 on=-2_1 0
N, 1/ B :
1/B _ p2 I
= lim 2 = lim 222050) 1o
B—w NO B—w —_
=0.693=-1.6 dB

20 —

-1.6
|

Unachievable
region

Capacity boundary

Achievable region

0.1%

0 6 12 18 24 30 36
P/N, (dB)
Shannon
limit

« This is the ultimate limit of green communications.
— For more information, see http://www.greentouch.org
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Example

A voice-grade channel of the telephone network has a
bandwidth of 3.4 kHz.

— (a) Calculate the capacity for a SNR of 30 dB.
— (b) Calculate the SNR required to support a rate of 4800 bps.

Answer:
(a) 30 dB = SNR =1000

C = Blog,(1+ SNR)
=3.4xlog,(1+1000)
=33.9 kbps

SNR =28 —1

_ 24.8/3.4 . 1

=1.66=2.2dB
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General Model of a Modulated

Communicati System

N/ 11T THITRATNI CALIWVII \ 4 wrlll

Signal m(tl

SRR Modulator
s(t)

White Gaussian Predetection Postdetection
noise n({¢) signal-to-noise ratio signal-to-naise ratio
X(t) (SNR);, (SN H)O
Predetection J’ Postdetection L y()
filter - Demodulator filter =
bandwidth = 8 bandwidth = W
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Input/Output SNR

The maximum rate at which information may arrive at the

receiver is
C. =Blog,(1+ SNR,))
— SNR, : the predetection signal-to-noise ratio at the input to the
demodulator.

The maximum rate at which information can leave the
receiver is

C =Wlog,(1+SNR))
— SNR,: the SNR at the output of the postdetection filter.

For the ideal modulation scheme:
C,=C = 1+SNR =[1+SNR, PV
For high SNR,
SNR, ~ SNR, B'W
It seems that spreading the bandwidth would make the
output SNR increase exponentially (not true).
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A More Elaborate Analysis

If the channel noise has a double-sided white PSD of N, 2
= the average noise power at the demodulator will be N,B.

If the signal power is P:

g =P W _P
N,B B NW
P
_NOW =SNR, s : the baseband SNR

Increasing B will reduce SNR, , and thus

mn?

Wlog,(1+SNR ) = Blog, (1 + SNRisetand
B/W

Output SNR of an ideal communication system:

1im(1 + lj =e
X—>00 x

SNR, = (1+ aaaaa
B

'NR
_) eS baseband as B / W _) o0
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SNR vs. Bandwidth

0 5 10 15 20 25 30 35

SN Rbaseband (d B)
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Implications to Analog Systems

A bandwidth spreading ratio of B/W=1 corresponds to both
SSB and baseband.

A bandwidth spreading ratio of B/W=2 corresponds to
DSB and AM (the ideal system would
have SNR =SNR. /4 ).

A bandwidth spreading ratio of B/W=12 corresponds to
commercial FM broadcasting and AM (the ideal system
would have  SNR, =~ ¢ w ).

SSB and baseband systems provide noise performance
identical to the ideal (which is trivial).

DSB has a worse performance because of its additional
bandwidth requirements.

FM systems only come close to the ideal system near
threshold.
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Noise Perfo

Communi

w1111 TRALI

70 T T L] T T 1
60 FM with deemphasis
50
FM, no deemphasis
—_ 40 - —
g
3 4
.
Z
W
~ 30
Baseband
DSB
SSB
20+
AM
(envelope
dctection)
10 |- _
~~ AM
- <~ (product
= -~ detection)
0 L~ | L 1 i I —
5 10 15 20 25 30 35
(S/N) baseband (dB)
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Discussion

Known analogue communication systems do not achieve
the ideal performance in general.

Something must be missing with analogue
communications.

Similarly, it can be shown that simple digital modulation
schemes cannot achieve capacity too.

One must resort to digital communications and coding to
approach the capacity.

The idea of tradeoff between bandwidth and SNR is useful
iIn spread-spectrum communications (CDMA, 3G mobile
communications) and ultra wideband.
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Outline

Introduction
Block codes

Error detection and
correction

Generator matrix and
parity-check matrix

References
— Haykin & Moher, Communication Systems, 5th ed., Chap. 10

— Lathi, Modern Digital and Analog Communication Systems,
3rd ed., Chap. 16
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Taxonomy of Coding

Error
Detection

Error
Correction
Codin

= FEC
- no feed

channel
Cryptography
(Ciphering)

channel
ssions

Error Control | Line Coding
Coding

bits - Strives to - for baseband

Source
Coding

utilize communications
channel
capacity by
C : adding
Qrrplizsktiol extra bits
Coding
- Redundancy removal:
- Destructive (jpeg, mpeg) FEC: Forward Error Correction
- Non-destructive (zip) ARQ: Automatic Repeat Request
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Block vs. Convolutional Codes

 Block codes

. , k input bits
k bits (n,k) n bits «—

— — L] T 1T I 1

I
encoder \
I

[ I
— Output of » bits depends only on the k input bits ™, g it

 Convolutional codes
input bit

— Each source bit influences n(L+1) output bits —
— L is the memory length L1 J 1]

— Like convolution in a linear filter / \I\

Path 1 N »

Kﬁ n(L+1) output bits
InPut 1 [?‘ -Kwﬁ)tfut
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Noise and Errors

Noise can corrupt the information that we wish to transmit.

Generally corruption of a signal is a bad thing that should
be avoided, if possible.

Different systems will generally require different levels of
protection against errors due to noise.

Consequently, a number of different techniques have been
developed to detect and correct different types and
numbers of errors.
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Channel Model

« We can measure the effect of noise in different ways.
The most common is to specify an error probability, p.
Consider the case of a Binary Symmetric Channel
with noise.

1

-
-

« All examples considered here will be for error
probabilities that are symmetric, stationary and
statistically independent.
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Simple Error Checks

If the error probability is small and the information is fairly fault tolerant,
it is possible to use simple methods to detect errors.

Repetition — Repeating each bit in the_message

— If the two symbols in an adjacent pair are different, it is likely that an error
has occurred.

— However, this is not very efficient (efficiency is halved).
— Repetition provides a means for error checking, but not for error correction.
Parity bit — Use of a ‘parity bit” at the end of the message

— A parity bit is a single bit that corresponds to the sum of the other
message bits (modulo 2).

— This allows any odd number of errors to be detected, but not even
numbers.

— As with repetition, this technique only allows error checking, not error
correction.

— It is more efficient than simple repetition.
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Block Codes

* An important class of codes that can detect and correct
some errors are block codes

» The first error-correcting block code was devised by
Hamming around the same time as Shannon was working
on the foundation of information theory

— Hamming codes are a particular class of linear block code

 Block codes

— Encode a series of symbols from the source, a ‘block’, into a
longer string: codeword or code block

— Errors can be detected as the received coded block will not be
one of the recognized, valid coded blocks

— Error correction: To “decode” and associate a corrupted block to a
valid coded block by its proximity (as measured by the “Hamming
distance”)
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Binary Fields and Vectors

We need to discuss some of mathematics that will be needed.

Fortunately, we have restricted things to binary sources, so the
mathematics is relatively simple.

The binary alphabet A={0,1} is properly referred to as a Galois field
with two elements, denoted GF(2).

Addition (XOR)

0+0=0,0+1=1+0=1,1+1=0

Multiplication (AND)

01=00=10=0,11=1

This is also referred to as Boolean arithmetic in Digital Electronics or
modulo-2 arithmetic.

A message is built up from a number of binary fields, and forms a
binary vector, rather than a larger binary number.

Hence, 101#5 101={1}{0}1}
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Example

Calculate the following examples of binary field arithmetic:

01001 + 01110
10010 » 01110
(1111+0011) o 0011

Answers

NnNN1141
Uu I | |

00010
1100 « 0011 = 0000
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Hamming Distance
« Hamming Weight
— The Hamming weight of a binary vector, a (written as wy(a)), is the
number of non-zero elements that it contains.
— Hence,
001110011 has a Hamming weight of 5.
000000000 has a Hamming weight of O.
« Hamming Distance

— The Hamming Distance between two binary vectors, a and b, is
written d(a,b) , and is equal to the Hamming weight of their
(Boolean) sum.

di(a,b) = wi(a+b)
— Hence, 01110011 and 10001011 have a Hamming distance of
dy= wy (01110011+10001011)
= wy (11111000) = 5
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Linear Block Codes

« Abinary linear block code that takes block of k bits of
source data and encodes them using n bits, is referred to
as a (n, k) binary linear block code.

— The ratio between the number of source bits and the number of
bits used in the code, R=k/n, is referred to as the code rate.

« The most important feature of a linear block code

— Linearity: the Boolean sum of any codewords must be another
codeword.

— This means that the set of code words forms a vector space,
within which mathematical operations can be defined and

performed.
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Generator Matrix

To construct a linear block code we define a matrix, the
generator matrix G, that converts blocks of source
symbols into longer blocks corresponding to code words.

G is a kX n matrix (k rows, n columns), that takes a
source block u (a binary vector of length k), to a code
word x (a binary vector of length n),

x=u-G

Generator
Message vector :> atrix :{> Code vector
G X

u
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Systematic Codes

k information bits (n-k) parity-check bits
N _
—
codeword

« Systematic codes: The first k bits will be the original
source block.

* From linear algebra, a kX n matrix of linearly independent
rows can always be written into the systematic form:

G =[xk : Py ><(n—k)]
where I, Is the kX kidentity matrix, and Py, Is a
kX (n—k) matrix of parity bits.

* Every linear code is equivalent to a systematic code.

241



Example

Given the generator matrix for a (7,4) systematic code

0 O
0
1
0

o O O =

1 0 1
0 0 1
10 0 1 1 |
Calculate the code words for the following source blocks:
I 1010 [Answer: x = 1010101]
ii. 1101 [Answer: x = 1101001]
iii. 0010 [Answer: x = 0010110]

iv. Calculate the Hamming distances between each pair of code
words generated in parts (i) to (iii), and compare them to the
Hamming distances for the original source blocks. [Answer: 4,
7, 3, larger than 3, 4, 1]
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Error Detection

To determine the number of errors a particular code can detect and
correct, we look at the minimum Hamming distance between any two
code words.

From linearity the zero vector must be a code word.
If we define the minimum distance between any two code words to be
d., = min{dy(a,b), a,beC} = min{d,(0,a+b), a,beC}
= min{wy(c), ceC, c#0}
where C is the set of code words.

The number of errors that can be detected is then (d,,,,—1), since d.;,
errors can turn an input code word into a different but valid code word.
Less than d,,;,, errors will turn an input code word into a vector that is
not a valid code word.
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Error Correction

« The number t of errors that can be corrected is simply
the number of errors that can be detected divided by two
and rounded down to the nearest integer, since any
output vector with less than this number of errors will
‘nearer’ to the input code word.

r
() (b)

dminZ 2t + 1 dmin< 2t
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Parity Check Matrix

To decode a block coded vector, it is more complicated.
If the generator matrix is of the form
G = [l xx: Py ><(n—k)]
To check for errors, we define a new matrix, the parity check matrix,
H. The parity check matrix is a (n-k) X n matrix that is defined so that

— It will produce a zero vector when no error in the received code
vector x,

xH™=0 (14.1)
where H' is the transpose of H.

To satisfy this condition, it is sufficient to write the parity check matrix
in the form

H = [(Pk ><(n-k))TE I(n —k) X(n -k)]

The minimum Hamming distance is equal to the smallest number of
columns of H that are linearly dependent.

— This follows from the condition (14.1). See Haykin, Chap. 10 for proof.
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Syndrome

If the received coded block y contains errors, then the
product of the received block with the transpose of the
parity check matrix will not be zero,

y-H"#0
Writing y = x + e which is the sum of the original coded
block x and the error e, we find that

y-H =e-H’
This value is referred to as the syndrome, s=y-H' =e -
H'.
The syndrome is a function of the error only, and contains

the information required to isolate the position (or positions)
of the error (or errors).
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Syndrome Decoding

« sis an (n-k) row vector, taking 2("% -1 possible values (the
zero vector corresponding to no error).

« This means that it is necessary to calculate and store 2(")
-1 syndromes as a look-up table to be able to pin-point the
positions of the errors exactly.

* Problem: this is impractical for large values of (n — k).

Received Syndrome
vectory Parity-check S > Syndrome
matrix H table

Decoded
codword x

Error
vector e
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Summary

A linear block code can be defined by a generator matrix
G and the associated parity-check matrix H.

Every linear block code is equivalent to a systematic code.

The key parameter of a linear block code is the minimum
Hamming distance d_. :

— Uptod . — 1 errors can be detected,;

— Uptol(d,,, — 1)/2] errors can be corrected.

Syndrome decoding: compute the syndrome and then find
the error pattern.

— Only practical for short codes.
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Outline

« Hamming codes

— A special type of cyclic codes that
correct a single error

« Cyclic codes
— Can correct more errors
— The most important class of block codes

— Implementation takes advantage
of polynomial multiplication/division

* References
— Haykin & Moher, Communication Systems, 5th ed., Chap. 10

— Lathi, Modern Digital and Analog Communication Systems,
3rd ed., Chap. 16
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Hamming Codes

Hamming codes are a class of linear block codes that
can correct a single error. They satisfy the condition
r=n—k=log,(ntl)=>n=2"-1,k=2"-1-r.

From this expression, it is easy to see that the first few
Hamming codes correspond to

(n, k)=(7,4), (15,11), (31,26),...
They are easy to construct and are simple to use.

— For all Hamming codes, d,;, = 3.

— All (correctable) error vectors have unit Hamming weight, and the
syndrome associated with an error in the /’th column of the vector
is the /’th row of H” .

Columns of H are binary representations of 1, ..., n.
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Syndrome Table

For the (7,4) Hamming code, the parity check matrix is

01 11100 s e
H=[1 01101 0 000 0000000
1 01 0 0 1] 001 0000001

Generator matr|2< 010 0000010

1 000 0 1 1
100 0000100

|01 00 10
o001 01 1 0 111 0001000
0001 1 1 1 110 0010000
. ) 101 0100000

The corresponding syndrome table is:

011 1000000

T
s=eH

When a coded vector is received, the syndrome is calculated and any
single error identified, and corrected by exchanging the relevant bit
with the other binary value — However, problems can occur if there is
more than one error.
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Example

« Consider the (7,4) Hamming code. If the code vector
1000011 is sent while 1000001 and 1001100 are received,

decode the information bits.

« Answer:

— The first vector
s=(1000001)H™=(010)
—=e=(0000010)
—=x=(1000001)+(0000010)=(1000011)
=u=(1000) correct (as there is one error)

— The second vector
s=(1001100)H™=(000)
=error-free
—=x=(1001100)
=u=(1001) wrong (as there are 4 errors)
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Cyclic Codes

Cyclic codes are a subclass of linear block codes offering larger
Hamming distances, thereby stronger error-correction capability.

Whereas the principal property of the simple linear block code is
that the sum of any two code words is also a code word, the cyclic
codes have an additional property: a cyclic shift of any code word
Is also a code word.

A cyclic shift of a binary vector is defined by taking a vector of
length n,

a=lay, aq .--, 8p4]
and rearranging the elements,
a=la,.q, ay a4, ---, @n9]
A code is cyclic if:
(Cps C4y .-s Crq) EC = (C, 4, Cpy +.., Cp) EC
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Generator Matrices

« Acyclic code is still a linear block code, so all of the
properties previously discussed hold for cyclic codes.

« They are constructed by defining a generator matrix, and
an associated parity check matrix and are decoded using
syndromes in exactly the same way as the other linear
block codes that we have discussed.

« A generator matrix is defined in the same way as before,
except that the rows are now cyclic shifts of one n-
dimensional basis vector.

g0 & - 8-k 0 0
0 g &g - g = 0

O - 0 g g - g
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Encoding

The cyclic property leads to a very useful property: they can be
represented simply (mathematically and in hardware) by polynomial
operations.

We start by looking at the code word x generated by a source block
u,

X=U-G=[Xg Xqy--5 Xpq]
With the generator matrix in the cyclic (non-systematic) form given in
the previous slide, the elements of the code words are,

Xo = Ug9o
X1 = Uggq it U9

Xn-1 = Up19n
These elements take the general form,

-1
X = Zuigl—i
i=0
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Polynomial Representation

Taking a binary vector x, it is possible to represent this as a
polynomial in z (over the binary field)

X=[Xg, Xqseee , Xpoq ] @ X(2) =X 2" + X, 272 +...+ X, _,
Representing the original code word and the n-dimensional basis
vector for the cyclic code as polynomials,
u=1[ug,Us,..., U1 ] > Uu(2)= Uy 2K +u, 2672 +...+u, _,
9=1[90: 91 s Gk ,0,...,0]
—g(2)=go 27 + g2+ 4 gy
We notice that the product of these two polynomials is exactly the

same as the polynomial representation of the corresponding code
vector.

Nonsystematic Encoding: x(z) = u(z) - g(z)

This means that the problem of matrix-vector multiplication can be
reduced to a problem of polynomial multiplication.
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Advantage

« The main advantage is that it simplifies the cyclic shift
operation, and thereby simplifies the hardware
implementation of the code considerably.

« Multiplication of the code word by z shifts all of the
coefficients along by one, and replacing the term (x,z")
by a term (x,2°), gives a cyclic shift.

« Asimpler way to achieve the same result is to multiply
the polynomial by z, divide by z"-1, and take the
remainder term, which can be written as

(z x(z)) mod(z" —1)
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Parity Check Polynomials

One property important to cyclic codes is the ability to factorise
polynomials. Given a polynomial of the form a(z) = z"'-1 = z"+1 (n > 1),
it is always possible to find two polynomials, such that,

z"+1 = g(z) h(z)
Taking g(z) to be a generator polynomial, this condition is sufficient for
a resultant code to be an (n,k) cyclic code, where:
— g(z) is a polynomial of degree n—-k =r.
— h(z) is a polynomial of degree k.

The other factor, the polynomial h(z), turns out to be a parity check
polynomial, playing the same role as the parity check matrix.

If we have a valid code word, x(z), the product of the code word with
h(z) is zero (modulo z"+1), and if we have a code word contained an
error,

(¥(2)h(z))mod(z"+1) = [(x(z)+e(z))h(z)lmod(z"+1)
= [e(z)h(z)]mod(z"+1)
which is called the syndrome polynomial, s(z).
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Encoding/Decoding

« Encoding: x(z)=u(z)g(z);
« Parity check polynomial:
h(z) =[z"+1] /9(2)
« Decoding: (y(z) is the received vector)
— Calculate the syndrome polynomial:

S(z)=(y(z)h(z))mod(z"+1)
— Look up the syndrome table to get e(z) from s(z);
— X(2)=y(z)*e(2);
— u(z)=x(2)/9(2);
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« Binary polynomial multiplication: multiply-by-g(z)

a@),

Hardware Implementation

gO_’@ 81 8>

80

a(z)

Y Y

9(2)=90+912+9,7°+952°, go=05=1;
« Binary polynomial division: divide-by-g(z)

81 54

U/

9(2)=9¢*t912+9,2°+9:2°, gp=95=1;

>
b(z)
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Examples of Cyclic Codes

Hamming code (used in computer memory)
Cyclic redundancy check (CRC) code (used in Ethernet, ARQ etc.)
Bose-Chaudhuri-Hocquenghem (BCH) code

Reed-Solomon (RS) code (widely used in CD, DVD, hard disks,
wireless, satellites etc.)

Bit Error Rate

| I | |
| |
107} e i e I | P ———]
3 |
|
|
1002 e e e A ——— (EE e Aol (R0 ohoril
10-3 ___________________________ =
— Uncoded PSK
4 —0o— Hamming(/,4)
10 F =~ 7| =~ BCHEIA&: [~
- —=— R5(31,15)
-l | I P .
TR - e LRSS |
= | | |
_ I | |l
-6 | | | 1
2 ] Z 4 5 2 10
SNR per bit (dB)




Applications of Coding

The first success was the application of convolutional
codes in deep space probes 1960's-70’s.
— Mariner Mars, Viking, Pioneer missions by NASA

Voyager, Galileo missions were further enhanced by
concatenated codes (RS + convolutional).

The next chapter was trellis coded modulation (TCM) for
voice-band modems in 1980’s.

1990’s saw turbo codes approached capacity limit (now
used in 3G).

Followed by another breakthrough — space-time codes In
2000’s (used in WiMax, 4G)

The current frontier is network coding which may widen the
bottleneck of Internet.
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Fourier Transform Theoremsa

Name of Theorem

1. Superposition (a, and a,

arbitrary constants)
2. Time delay

3a. Scale change

b. Time reversal

4. Duality

5a. Frequency translation
b. Modulation

6. Differentiation
7. Integration

8. Convolution

9. Multiplication

ax,(t) + a,x,(r)

x(t — 1)
x(at)
x(—1t)
X(1)
x(t)e !
x(f) cos wyt
d'x(1)

dtn

1

j_, x(t") dt’
fi x,(t — £)x,(") dt’

xK

=J (')t — 1) dt’

x,(0x,(1)

a,Xl(f_) F (lzxg(f)

X(f)e

o

X(—f) = X * (f)
x(=f)

X(f = fy)
= FF S )

(j2mfyX(f)
(J27f) 1X(f) + 2X(0)8(f)

X, (HXA(S)

f'&u<m&wnw
= [ xx(r-ryar

“w, = 2f,; x(t) is assumed to be real in 3b.
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Lectures

Introduction and background

1.
2.

3.

Introduction

Probability and random
processes

Noise

Effects of noise on analog

4.
5.

communications
Noise performance of DSB

Noise performance of SSB and
AM

Noise performance of FM

Pre/de-emphasis for FM and
comparison of analog systems

Digital communications

8. Digital representation of signals
9. Baseband digital transmission
10. Digital modulation
11.Noncoherent demodulation
Information theory

12. Entropy and source coding

13. Channel capacity

14.Block codes

15. Cyclic codes
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The Exam

 The exam paper contains 3 questions. All questions are
compulsory.

 For example, the questions may look like

— Question 1 (40 marks): Basic knowledge of communication
systems, elements of information theory and/or coding, mostly
bookwork

— Question 2 (30 marks): Analog or digital communications,
bookwork, new example/application/theory

— Question 3 (30 marks): Digital or analog communications or
information theory/coding, bookwork, new
example/application/theory

« Sample questions:
— Past papers
— Problems in classes
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Introduction, Probability and Random
Processes
Primary resources in communications: power, bandwidth,
cost
Objectives of system design: reliability and efficiency
Performance measures: SNR or bit error probability

Probability distribution: Uniform distribution, Gaussian
distribution, Rayleigh distribution, Ricean distribution

Random process: stationary random process, auto-
correlation and power spectral density, Wiener-Khinchine
relation

Sy(f)=] Re(@)e ™" dz
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Noise

Why is noise important in communications? How does
noise affect the performance? What types of noise exist?

White noise: PSD is constant over an infinite bandwidth.
Gaussian noise: PDF is Gaussian.
Additive white Gaussian noise

Bandlimited noise, bandpass representation, baseband
noise n(t) and n(t), power spectral density

n(t)=n,(t)cos(2af t)—n_(t)sm(2xf t)

Sy(f =S+ Sy(f+ 1), | f =B

0, otherwise

Sc(f)=5s(f)={
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Noise performance of AM

Signal-to-noise ratio

£

SNR = —

N

Baseband communication model

SNR,

aseband =
N

P

T

AM, DSB-SC, SSB, synchronous detection, envelope

detection
Output SNR

(De-) Modulation | Output | Transnutted E a;cband Iil%;re of 2&?
Format SNR Power clerence (= Output S
SNR Reference SNR)
AM Coherent P A*+P A +P P <1
Detection 2N W 2 AN W 4 +P
DSB-SC Coherent | 4°P AP A'P :
Detection 2N W 2 2N W
SSB Coherent AP AP AP !
Detection 4N WV 4 4N, W
AM Em'clfnpc P £ip 4 +P P
Detection (Small SN - SN - <1
Noise) =Yo P =V, A +P
AM l_Envclope £ap £ +p
Detection (Large Poor _, Poor
. ) NW
Noise) - 0
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Noise performance of FM

FM modulator and demodulator

Method to deal with noise in FM: linear argument at high
SNR

Derivation of the output SNR, threshold effect

Sl Sy () 8y, ()

NV

I

_Er 2 I 0 oo
2

(a) (h (c)

Pre-emphasis and de-emphasis, how they increase the
output SNR
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Digital communications

PCM: sample, quantize, and encode

Quantization noise and SNR SNR (dB)=6n+10log,, [;—f} (dB)

p

Companding (A/u-law) and line coding

Baseband data transmission, effects of noise, and
probability of error
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Noise performance of bandpass digital
communications

Modulation formats: ASK, FSK, PSK
Coherent detection and its error probability

Noncoherent detection and its error probability (including
differential detection for DPSK)

Q-function ﬂ(y) compl tation bv

approximation
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Performance of digital modulation

Scheme Bit Error Rate
Coherent ASK 0(A/20)
Coherent FSK O(4N20)
Coherent PSK Q(A/ o)

Noncoherent Y5 exp(-A%/8 6%)
ASK

Noncoherent Y5 exp(-A%/4067)
FSK

DPSK Y5 exp(-4?/267)

Bit error rate (BER)

0.5

101

102

103

104

10-5

— | |
NN
h \ik Ccl)heren’lt
NG
\

Coherent PSK A \\ \\ .
A\

\ \

\\\

Average SNR, dB
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Information theory

The entropy of a discrete memoryless information source

K
H(S)=-) p,log, p,
k=1

Entropy function (entropy of a binary memoryless source)
H(S)=—(1-p)log,(1-p)—plog, p=H(p)

Source coding theorem: The minimum average codeword
length for any source coding scheme is H(S) for a discrete

memoryless Source.

Huffman coding: An efficient source coding algorithm.
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Channel coding theorem

If the transmission rate R < C, then there exists a
coding scheme such that the output of the source can
be transmitted over a noisy channel with an arbitrarily
small probability of error. Conversely, it is not
possible to transmit messages without error if R > C.

Shannon formula

p )

N R
J.V()Ll/

C =Blog, (1+SNR) = Blog, (1+
\
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Channel coding

Block vs. convolutional codes
Binary fields and vector space, Hamming distance/weight

A linear block code can be defined by a generator matrix
G and the associated parity-check matrix H.

Every linear block code is equivalent to a systematic code.

The key parameter of a linear block code is the minimum
Hamming distance d_. :

— Uptod . — 1 errors can be detected,;

— Uptol(d,, — 1)/2] errors can be corrected.

Syndrome decoding: compute the syndrome and then find
the error pattern.

Hamming codes

Cyclic codes: (polynomial representation is not
examinable)

279



Appendix:
More Background on Probability



Probability

Sample Space
— S : Set of all random experiment outcomes
— S ={s:sisanoutcome }
Examples
— Fortossingacoin,S={H, T}
— Rolladie,S={1,2,...,6}
Event £Ec S
— Roll a die twice: S = { (H,H), (H,T), (T,H), (T,T) }
— Event E={(H,H), (T,T)}
— A collection of events, F. Obviously, ' < §
A probability measure on F is a function P : F — [0,1] satisfying the
probability axioms:
- P(S)=1
- P(F)=0
— For events A, B belonging to F, if AN B=0, P(A U B) = P(A) + P(B)
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Random Variables

 Arandom variable X(s) is a variable whose value depends on
the outcome s of a random experiment with the defined
probability measure.

« For convenience, we simply denote the random variable by X.

« Consider a gamble in Macau (an example of discrete random

variables):

+5 seWw
Loss | Draw X(s)=4 0 seD S=WuDuUL
P=3/8/ P=1/4 -5 sel

D7/ Y7 N _ &N _ Dr . A7\ _ Ds/s1AI7N\ _ 3
L(X(s)=3)=rs:sew)=rw)=x

P(X(s)=0)=P(s:seD)=P(D)=1
-$5 0 $5 » X(E) P(X(s)=-5)=P(s:sel)=P(L)=%

8

« Continuous random variables: take values that vary

continuously, e.g., water flow of River Thames through London
Bridge
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CDF and pdf

Cumulative Distribution Function (CDF), also known as Probability
Distribution Function

Probability Density Function (pdf)
CDF : F,(x)=P(X <x)

pdf : £, (x) = L)

Fe(x)= | fe(»)dy

Fe(@)= [ fo(y)dy =1

— 0

P(a< X <b)=Fy(b)=Fy(a)=| fr(»)dy

Since F', (x)1s non - decreasing

Jr(x)= dFZX(X) >0
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Interpretation of pdf

- If Ax is sufficiently small,
x+Ax

P(x< X <x+Ax) = ij(y)dy = fv(x)Ax

fx(») Area

fx (x)

« Expectation operator (expected value or average):

Hx = T Y Jx(y)dy

E[X]

« Variance: o
oy = E(X - ,))= [ (=) £ (0)dy = ELX*]— 1
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Moments of a Random Variable

 Moments: 4 = E[X"] for r =12,3,...

Average (mean) of X:
= E[X] or m,

 Central moments, centered on the mean
u'=E[| X —m,|] for r =1,2,3,...
« Comments
w'=EX-m,|=E[X]|]-m, =0
Variance: 1,'=E[| X —m, [']
Standard deviation: o = \/72'

which gives a measure of “dispersion” of X about its mean
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Examples of Discrete Distributions
Let p+g=1

Bernoulli distribution
P(X =1)=p P(X =0)=gq

with p representing the probability of success in an experiment
Binomial distribution
n
P(Y =k) = (kjpkq”k k=0,1,2,.,n

Y represents the total number of successes, in an independent
trial of n Bernoulli experiments

Exercise: Verify E[X]= p, 0)2( pPq
E[Y]=np, oy = npq
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Examples of Continuous Distributions:
Exponential Distribution

fXEx)
A

0

fy(x)=Ae ™ forx=0

« Exercise: Verify E(X)=+1

1L

2 _
GX_AZ
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Normal (Gaussian) Distribution

fx ‘(jC)
/k
» X
0 m
_(x—m)2
fX(x)z\/ﬁge 202 for —oo < x < o0
C(r-m)?
0 X 20_2
Fy(x)= ro Ie dy

Exercise: Verify E(X)=m
O_Xz _ 52
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Rayleigh and Rice Distributions

. Define a random variable R = v/ X + Y2 where X and Y are

independent Gaussian with zero mean and variance g
* R has Rayleigh distribution:
fo(r) = ﬁe"”z/(zaz) r>0
* |f X has nonzero mean A, R has Rice distribution:

(2442 2 .
fo)=-5e "L () 120

2
where [,(x) =+ . e “*’d@ is the modified zero-order

Bessel function of the first kind

289



Conditional Probability

« Consider two events A and B, not necessarily independent of each
other

— Define P(A|B) = Probability of A given B

« Carry out N independent trials (experiments) and count
— N(A) = Number of trials with A outcome
— N(A,B) = Number of trials with both A and B outcome

« By definition

P(A4) = N](VA) as N > o

P(A|B)=Y{48)

N (B)

N (A,B N(A,B) N(4
P(An B)="10E) o N<(A)) A = p(B|4)P(4)

Similarly, P(A N B)= P(A|B)P(B)

« Statistical independence between A and B

P(A|B)=P(4) < P(ANB)=P(A)P(B)
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Joint Random Variables

Random wvariables : X,Y

Fo(x,y)= jﬁ ffﬂ (u,v)dudv

—00—00

fyy (x,y): the joint pdf
F.. (x,y): the joint CDF

« Properties of joint distribution:

1) Fyy(o,0)= | [ fyy@u,v)dudv=1

2a) fy()= [ fyy(xr)dy
y=—00
2b)  fy(x)= [ fxy(x,y)dx

X=—00
O*Fyy (x,
3 fay (n,y) =S

4) X,Y are independent < fyy (x,y) = fy(x)fy (»)
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Conditional CDF and pdf

Define Iy (v | x) as the conditional CDF for Y given X = x.

By conditional probability, fff (1s.v ) dud

_ P(Y<y,x<X=<x+Ax) _
Fo(ylx< X <x+Ax)= P(x<X<x+Ax) A
[ fxuydu

y
J'fXY (x,v)Axdv

Jx (x)Ax

y
IfXY (x,v)dv

As Ax = 0, F,(y|x) =515

The conditional pdf

dFy ( ,
fr(ylx)=" = f (y]x) =L
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Joint Distribution Function of Several Random Variables

The joint PDF of n random variables
X X,
Fy v ox (X, %55..%,) = P(X, < x,X, <x,,.X, <x,)
The joint pdf
leXZ...Xn (%X}, X550, ) =
Independent random variables
FXle...Xn (X555 X,) :F)(l (XI)FXZ (x2)"FXn (x,)
leXz...Xn (X555 X,,) :fxl (xl)fX2 (x2>---an (x,)

Uncorrelated random variables

E[X,X 1= E[X,]E[X,] Vi, j,i# ]

n
0 FXIXQ...XH (X1,X5,5...%,)
0x,0x, ...0x,,
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Covariance and Correlation Coefficient

Covariance of Xand Y:
cov(X,Y)=E[(X —my )Y —my)]

Correlation Coefficient:

_cov(X,Y) _ E[(X-my)(Y—my)]
Pxy = oyoy o yOy

Property 1: =1 < pyy <1

Property 2: X'and Y are linearly related (i.e., Y = aX +b)
ifand only if p,, =+1

Property 3: If X and Y are independent, Pxy =0

Caution: The converse of Property 3 is not true in general.
Thatis, if pyy =0, Xand Y are not necessarily
independent!
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Joint Gaussian distribution

X, Y jomtly normally distributed with m, =m, =0,0, =0, =0
— 2 2
Fir(60) = s e s (6 - 200 + )

The marginal density :

ﬁb&—jﬁﬂxwﬂ—zﬁﬁm

Conditional dens1ty function :

Fay (x]y) = f)}Y((xy)y) Fgmexp{’z 2(1p )( _IOXYy)z}

Note that this conditional pdf is also a normal density function with
mean p,,»y and variance az(l—pﬁﬂ). The effect of the condition
(having Y=y on X) is to change the mean of Xto poxyy andto
reduce the variance by ¢’ p3, .

295



Independent vs. Uncorrelated

Independent implies Uncorrelated
Uncorrelated does not imply Independence

For jointly Gaussian random variables, Uncorrelated
implies Independent (this is the only exceptional case!)

Exercise: verify the above claim of jointly Gaussian
random variables
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An example of uncorrelated but dependent random variables

Let & be uniformly distributed in [0,27]
f,(x)=5 for 0<x<2r

2r

Define random variables X and Y as X =cosf Y =sinb

Clearly, X and Y are not independent. In particular, for a given ¢ ,

XandY d dent.
and v are dependen If X and Y were independent, we

should see possible sample points of

. Locus of (X,Y) assume all possible values of X

Xand Y and Y'in a unit square.

Y,
/\< But X and Y are uncorrelated as
g - X Pxy =E[(X —my )Y —my)]
\/ = E[XY]

= ﬁjg”cosﬁsinﬁdﬁ

= (!
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Central Limit Theorem

n
 Define §, = X X,
i=1
where X ;'s arei.i.d. with E[X]=u, o, =0’<w

. . S _
» Define a new random variable, R, ==—"

Central Limit Theorem :

X

lim P(R, < x)=—=[e " *dy

— 0

* Importance: The “shifted and scaled” sum of a very large number
of i.i.d. random variables has a Gaussian distribution
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